Suppr超能文献

构建钛基微环境调控骨髓基质细胞体外成骨分化及体内成骨

Construction of microenvironment onto titanium substrates to regulate the osteoblastic differentiation of bone marrow stromal cells in vitro and osteogenesis in vivo.

机构信息

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China.

出版信息

J Biomed Mater Res A. 2013 Mar;101(3):653-66. doi: 10.1002/jbm.a.34371. Epub 2012 Aug 28.

Abstract

To mimic the extracellular matrix of natural bone, apatite/gelatin composite was deposited onto nanostructured titanium substrates via a coprecipitation method, which was pretreated by potassium hydroxide and heat treatment to generate an anticorrosive nanostructured layer. The successful formation of the apatite/gelatin nanocomposite onto titanium surfaces was revealed by Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, atomic force microscopy (AFM), and thin film X-ray diffraction (TF-XRD) measurements, respectively. The immunofluorescence staining of vinculin revealed that the apatite/gelatin nanocomposite deposited titanium substrate was favorable for cell adhesion. More importantly, bone marrow stromal cells cultured onto the apatite/gelatin nanocomposite deposited titanium substrates displayed significantly higher (p < 0.05 or p < 0.01) proliferation and differentiation levels of alkaline phosphatase, mRNA expressions of osteocalcin (OC), osteopontin (OPN), and collagen type I (Col I), and OC content after culture for 7, 14, and 21 days, respectively, which was also revealed by the immunofluorescence analysis of OC and OPN expression. The deposition of apatite/gelatin nanocomposite improved bone density (p < 0.05) and bone-implant contact rate (p < 0.05), which was reflected by microcomputed tomography analysis and histological evaluation in vivo using a rabbit model. This work provides an approach to fabricate high-performance titanium-based implants with enhanced bone osseointegration.

摘要

为了模拟天然骨的细胞外基质,通过共沉淀法将磷灰石/明胶复合材料沉积在经过氢氧化钾预处理和热处理以生成耐腐蚀纳米结构层的纳米结构钛基底上。傅里叶变换红外光谱、场发射扫描电子显微镜、原子力显微镜(AFM)和薄膜 X 射线衍射(TF-XRD)测量分别证实了磷灰石/明胶纳米复合材料在钛表面的成功形成。荧光素标记的 vinculin 的免疫染色表明,沉积有磷灰石/明胶纳米复合材料的钛基底有利于细胞黏附。更重要的是,骨髓基质细胞在沉积有磷灰石/明胶纳米复合材料的钛基底上培养显示出碱性磷酸酶的增殖和分化水平显著提高(p < 0.05 或 p < 0.01),培养 7、14 和 21 天后骨钙素(OC)、骨桥蛋白(OPN)和 I 型胶原(Col I)的 mRNA 表达水平显著提高(p < 0.05 或 p < 0.01),OC 和 OPN 表达的免疫荧光分析也证实了这一点。磷灰石/明胶纳米复合材料的沉积提高了骨密度(p < 0.05)和骨-植入物接触率(p < 0.05),这反映在兔模型的体内 microCT 分析和组织学评估中。这项工作为制造具有增强骨整合性能的高性能钛基植入物提供了一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验