Department of Environmental Science and Technology, Cyprus University of Technology, P. O. Box 50329, 3603 Lemesos, Cyprus.
J Biol Chem. 2012 Oct 26;287(44):37495-507. doi: 10.1074/jbc.M112.403600. Epub 2012 Aug 27.
The complete understanding of a molecular mechanism of action requires the thermodynamic and kinetic characterization of different states and intermediates. Cytochrome c oxidase reduces O(2) to H(2)O, a reaction coupled to proton translocation across the membrane. Therefore, it is necessary to undertake a thorough characterization of the reduced form of the enzyme and the determination of the electron transfer processes and pathways between the redox-active centers. In this study Fourier transform infrared (FTIR) and time-resolved step-scan FTIR spectroscopy have been applied to study the fully reduced and mixed valence states of cytochrome ba(3) from Thermus thermophilus. We used as probe carbon monoxide (CO) to characterize both thermodynamically and kinetically the cytochrome ba(3)-CO complex in the 5.25-10.10 pH/pD range and to study the reverse intramolecular electron transfer initiated by the photolysis of CO in the two-electron reduced form. The time-resolved step-scan FTIR data revealed no pH/pD dependence in both the decay of the transient Cu(B)(1+)-CO complex and rebinding to heme a(3) rates, suggesting that no structural change takes place in the vicinity of the binuclear center. Surprisingly, photodissociation of CO from the mixed valence form of the enzyme does not lead to reverse electron transfer from the reduced heme a(3) to the oxidized low-spin heme b, as observed in all the other aa(3) and bo(3) oxidases previously examined. The heme b-heme a(3) electron transfer is guaranteed, and therefore, there is no need for structural rearrangements and complex synchronized cooperativities. Comparison among the available structures of ba(3)- and aa(3)-cytochrome c oxidases identifies possible active pathways involved in the electron transfer processes and key structural elements that contribute to the different behavior observed in cytochrome ba(3).
全面了解一个分子作用机制需要对不同状态和中间产物的热力学和动力学特性进行表征。细胞色素 c 氧化酶将 O(2)还原为 H(2)O,该反应与质子跨膜转运耦联。因此,有必要对酶的还原形式进行彻底表征,并确定氧化还原活性中心之间的电子传递过程和途径。在这项研究中,傅里叶变换红外(FTIR)和时间分辨分步扫描 FTIR 光谱已被应用于研究来自嗜热高温菌的细胞色素 ba(3)的完全还原和混合价态。我们使用一氧化碳(CO)作为探针,在 5.25-10.10 pH/pD 范围内对细胞色素 ba(3)-CO 配合物进行热力学和动力学表征,并研究了在两电子还原形式下通过 CO 的光解引发的反向分子内电子转移。时间分辨分步扫描 FTIR 数据显示,在瞬态 Cu(B)(1+)-CO 配合物的衰减和重新结合到 heme a(3)的速率中,没有 pH/pD 依赖性,这表明在双核中心附近没有结构变化。令人惊讶的是,从酶的混合价形式中光解 CO 不会导致从还原的 heme a(3)到氧化的低自旋 heme b 的反向电子转移,这与之前检查过的所有其他 aa(3)和 bo(3)氧化酶观察到的情况相反。heme b-heme a(3)电子转移得到保证,因此,不需要结构重排和复杂的同步协同作用。比较可用的 ba(3)-和 aa(3)-细胞色素 c 氧化酶结构,确定了参与电子传递过程的可能活性途径和有助于观察到细胞色素 ba(3)不同行为的关键结构元素。