Hayashi Takahiro, Lin I-Jin, Chen Ying, Fee James A, Moënne-Loccoz Pierre
Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
J Am Chem Soc. 2007 Dec 5;129(48):14952-8. doi: 10.1021/ja074600a. Epub 2007 Nov 13.
The two heme-copper terminal oxidases of Thermus thermophilus have been shown to catalyze the two-electron reduction of nitric oxide (NO) to nitrous oxide (N2O) [Giuffre, A.; Stubauer, G.; Sarti, P.; Brunori, M.; Zumft, W. G.; Buse, G.; Soulimane, T. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14718-14723]. While it is well-established that NO binds to the reduced heme a3 to form a low-spin heme {FeNO}7 species, the role CuB plays in the binding of the second NO remains unclear. Here we present low-temperature FTIR photolysis experiments carried out on the NO complex formed by addition of NO to fully reduced cytochrome ba3. Low-temperature UV-vis, EPR, and RR spectroscopies confirm the binding of NO to the heme a3 and the efficiency of the photolysis at 30 K. The nu(NO) modes from the light-induced FTIR difference spectra are isolated from other perturbed vibrations using 15NO and 15N18O. The nu(N-O)a3 is observed at 1622 cm-1, and upon photolysis, it is replaced by a new nu(N-O) at 1589 cm-1 assigned to a CuB-nitrosyl complex. This N-O stretching frequency is more than 100 cm-1 lower than those reported for Cu-NO models with three N-ligands and for CuB+-NO in bovine aa3. Because the UV-vis and RR data do not support a bridging configuration between CuB and heme a3 for the photolyzed NO, we assign the exceptionally low nu(NO) to an O-bound (eta1-O) or a side-on (eta2-NO) CuB-nitrosyl complex. From this study, we propose that, after binding of a first NO molecule to the heme a3 of fully reduced Tt ba3, the formation of an N-bound {CuNO}11 is prevented, and the addition of a second NO produces an O-bond CuB-hyponitrite species bridging CuB and Fea3. In contrast, bovine cytochrome c oxidase is believed to form an N-bound CuB-NO species; the [{FeNO}7{CuNO}11] complex is suggested here to be an inhibitory complex.
嗜热栖热菌的两种血红素-铜末端氧化酶已被证明可催化一氧化氮(NO)双电子还原为一氧化二氮(N₂O)[朱弗雷,A.;斯图鲍尔,G.;萨尔蒂,P.;布鲁诺里,M.;祖姆夫特,W. G.;布斯,G.;苏利马内,T.《美国国家科学院院刊》1999年,96卷,14718 - 14723页]。虽然NO与还原态的血红素a₃结合形成低自旋血红素{FeNO}₇物种这一点已得到充分证实,但CuB在第二个NO结合过程中所起的作用仍不清楚。在此,我们展示了对通过向完全还原的细胞色素ba₃中添加NO形成的NO复合物进行的低温傅里叶变换红外光解实验。低温紫外可见光谱、电子顺磁共振光谱和拉曼光谱证实了NO与血红素a₃的结合以及在30K下光解的效率。利用¹⁵NO和¹⁵N¹⁸O从光诱导傅里叶变换红外差谱中分离出了来自NO的ν(NO)模式与其他受扰振动。ν(N - O)a₃在1622 cm⁻¹处被观测到,光解后,它被一个位于1589 cm⁻¹处的新的ν(N - O)所取代,该新的ν(N - O)被归属于一个CuB - 亚硝酰复合物。这个N - O伸缩频率比具有三个N配体的Cu - NO模型以及牛aa₃中的CuB⁺ - NO所报道的频率低100 cm⁻¹以上。由于紫外可见光谱和拉曼光谱数据不支持光解后的NO在CuB和血红素a₃之间形成桥连构型,我们将异常低的ν(NO)归属于一个O结合(η¹ - O)或侧接(η² - NO)的CuB - 亚硝酰复合物。通过这项研究,我们提出,在第一个NO分子与完全还原的嗜热栖热菌ba₃的血红素a₃结合后,可防止形成N结合的{CuNO}₁₁,并且添加第二个NO会产生一个桥连CuB和Fea₃的O键合CuB - 连二次硝酸根物种。相比之下,牛细胞色素c氧化酶被认为会形成一个N结合的CuB - NO物种;这里提出的[{FeNO}₇{CuNO}₁₁]复合物被认为是一个抑制性复合物。