Institute for Advanced studies, Hong-Kong University of Science and Technology, Clear Water Bay, Kowloon, China.
Analyst. 2012 Oct 21;137(20):4785-94. doi: 10.1039/c2an35994d.
A novel imaging method for bulk refractive index sensing or label-free bio-molecular interaction sensing is presented. This method is based on specially designed "Peak tracking chip" (PTC) involving "tracks" of adjacent resonant waveguide gratings (RWG) "micropads" with slowly evolving resonance position. Using a simple camera the spatial information robustly retrieves the diffraction efficiency, which in turn transduces either the refractive index of the liquids on the tracks or the effective thickness of an immobilized biological layer. Our intrinsically multiplex chip combines tunability and versatility advantages of dielectric guided wave biochips without the need of costly hyperspectral instrumentation. The current success of surface plasmon imaging techniques suggests that our chip proposal could leverage an untapped potential to routinely extend such techniques in a convenient and sturdy optical configuration toward, for instance for large analytes detection. PTC design and fabrication are discussed with challenging process to control micropads properties by varying their period (step of 2 nm) or their duty cycle through the groove width (steps of 4 nm). Through monochromatic imaging of our PTC, we present experimental demonstration of bulk index sensing on the range [1.33-1.47] and of surface biomolecule detection of molecular weight 30 kDa in aqueous solution using different surface densities. A sensitivity of the order of 10(-5) RIU for bulk detection and a sensitivity of the order of ∼10 pg mm(-2) for label-free surface detection are expected, therefore opening a large range of application of our chip based imaging technique. Exploiting and chip design, we expect as well our chip to open new direction for multispectral studies through imaging.
一种用于体折射率传感或无标记生物分子相互作用传感的新型成像方法被提出。该方法基于特别设计的“峰跟踪芯片”(PTC),涉及具有缓慢演变的共振位置的相邻共振波导光栅(RWG)“微垫”的“轨道”。使用简单的相机,空间信息可以稳健地获取衍射效率,这反过来又转换了轨道上液体的折射率或固定化生物层的有效厚度。我们的固有多路复用芯片结合了介电导波生物芯片的可调谐性和多功能性优势,而无需昂贵的高光谱仪器。表面等离子体成像技术的当前成功表明,我们的芯片提案可以利用未开发的潜力,以方便和坚固的光学配置常规地扩展此类技术,例如用于大型分析物的检测。讨论了 PTC 的设计和制造,通过改变微垫的周期(2nm 的步长)或通过槽宽改变其占空比(4nm 的步长)来控制微垫的特性是具有挑战性的。通过对我们的 PTC 进行单色成像,我们展示了在[1.33-1.47]范围内的体折射率传感的实验演示,以及在水溶液中使用不同表面密度的分子量为 30kDa 的表面生物分子检测。对于体检测,预计灵敏度为 10(-5)RIU 量级,对于无标记表面检测,预计灵敏度为 ∼10pgmm(-2)量级,因此为我们的基于成像技术的芯片开辟了广泛的应用范围。通过成像,我们还期望利用芯片设计为多光谱研究开辟新的方向。