Suppr超能文献

在氨基糖苷类药物处理的大肠杆菌核糖核酸酶突变体中核糖体亚基合成的损伤。

Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli.

机构信息

Department of Biochemistry and Molecular Biology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.

出版信息

Arch Microbiol. 2012 Dec;194(12):1033-41. doi: 10.1007/s00203-012-0839-5. Epub 2012 Aug 29.

Abstract

The bacterial ribosome is an important target for many antimicrobial agents. Aminoglycoside antibiotics bind to both 30S and 50S ribosomal subunits, inhibiting translation and subunit formation. During ribosomal subunit biogenesis, ribonucleases (RNases) play an important role in rRNA processing. E. coli cells deficient for specific processing RNases are predicted to have an increased sensitivity to neomycin and paromomycin. Four RNase mutant strains showed an increased growth sensitivity to both aminoglycoside antibiotics. E. coli strains deficient for the rRNA processing enzymes RNase III, RNase E, RNase G or RNase PH showed significantly reduced subunit amounts after antibiotic treatment. A substantial increase in a 16S RNA precursor molecule was observed as well. Ribosomal RNA turnover was stimulated, and an enhancement of 16S and 23S rRNA fragmentation was detected in E. coli cells deficient for these enzymes. This work indicates that bacterial RNases may be novel antimicrobial targets.

摘要

细菌核糖体是许多抗菌药物的重要靶标。氨基糖苷类抗生素与 30S 和 50S 核糖体亚基结合,抑制翻译和亚基形成。在核糖体亚基生物发生过程中,核糖核酸酶(RNase)在 rRNA 加工中发挥重要作用。预计缺乏特定加工 RNase 的大肠杆菌细胞对新霉素和巴龙霉素的敏感性增加。四种 RNase 突变株对两种氨基糖苷类抗生素的生长敏感性均增加。缺乏 rRNA 加工酶 RNase III、RNase E、RNase G 或 RNase PH 的大肠杆菌菌株在抗生素处理后亚基数量明显减少。还观察到 16S RNA 前体分子的大量增加。核糖体 RNA 周转被刺激,并且在缺乏这些酶的大肠杆菌细胞中检测到 16S 和 23S rRNA 片段的增强。这项工作表明细菌 RNase 可能是新的抗菌药物靶标。

相似文献

1
Impairment of ribosomal subunit synthesis in aminoglycoside-treated ribonuclease mutants of Escherichia coli.
Arch Microbiol. 2012 Dec;194(12):1033-41. doi: 10.1007/s00203-012-0839-5. Epub 2012 Aug 29.
2
Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl ribonucleoside complex.
Curr Microbiol. 2013 Aug;67(2):226-33. doi: 10.1007/s00284-013-0350-5. Epub 2013 Mar 20.
4
Subunit Composition of Ribosome in the yqgF Mutant Is Deficient in pre-16S rRNA Processing of Escherichia coli.
J Mol Microbiol Biotechnol. 2018;28(4):179-182. doi: 10.1159/000494494. Epub 2018 Dec 19.
6
Gateway role for rRNA precursors in ribosome assembly.
J Bacteriol. 2012 Dec;194(24):6875-82. doi: 10.1128/JB.01467-12. Epub 2012 Oct 12.
7
Hygromycin B inhibition of protein synthesis and ribosome biogenesis in Escherichia coli.
Antimicrob Agents Chemother. 2007 Feb;51(2):591-6. doi: 10.1128/AAC.01116-06. Epub 2006 Oct 16.
9
The vanadyl ribonucleoside complex inhibits ribosomal subunit formation in Staphylococcus aureus.
J Antimicrob Chemother. 2012 Sep;67(9):2152-7. doi: 10.1093/jac/dks182. Epub 2012 May 29.
10
Uncovering a delicate balance between endonuclease RNase III and ribosomal protein S15 in E. coli ribosome assembly.
Biochimie. 2021 Dec;191:104-117. doi: 10.1016/j.biochi.2021.09.003. Epub 2021 Sep 8.

引用本文的文献

1
Macromolecular Structure Assembly as a Novel Antibiotic Target.
Antibiotics (Basel). 2022 Jul 13;11(7):937. doi: 10.3390/antibiotics11070937.
3
Antibiotics targeting bacterial ribosomal subunit biogenesis.
J Antimicrob Chemother. 2020 Apr 1;75(4):787-806. doi: 10.1093/jac/dkz544.
4
Bacterial ribonucleases and their roles in RNA metabolism.
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):242-300. doi: 10.1080/10409238.2019.1651816.
5
The large ribosomal subunit protein L9 enables the growth of EF-P deficient cells and enhances small subunit maturation.
PLoS One. 2015 Apr 16;10(4):e0120060. doi: 10.1371/journal.pone.0120060. eCollection 2015.
6
Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl ribonucleoside complex.
Curr Microbiol. 2013 Aug;67(2):226-33. doi: 10.1007/s00284-013-0350-5. Epub 2013 Mar 20.

本文引用的文献

1
Inhibition of ribosomal subunit synthesis in Escherichia coli by the vanadyl ribonucleoside complex.
Curr Microbiol. 2013 Aug;67(2):226-33. doi: 10.1007/s00284-013-0350-5. Epub 2013 Mar 20.
2
The vanadyl ribonucleoside complex inhibits ribosomal subunit formation in Staphylococcus aureus.
J Antimicrob Chemother. 2012 Sep;67(9):2152-7. doi: 10.1093/jac/dks182. Epub 2012 May 29.
3
RNA decay: a novel therapeutic target in bacteria.
Wiley Interdiscip Rev RNA. 2012 May-Jun;3(3):443-54. doi: 10.1002/wrna.1110. Epub 2012 Feb 28.
4
Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA.
RNA. 2012 Feb;18(2):345-53. doi: 10.1261/rna.027854.111. Epub 2011 Dec 21.
6
RNase G participates in processing of the 5'-end of 23S ribosomal RNA.
J Microbiol. 2011 Jun;49(3):508-11. doi: 10.1007/s12275-011-1198-7. Epub 2011 Jun 30.
7
Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing.
Mol Microbiol. 2010 Oct;78(2):506-18. doi: 10.1111/j.1365-2958.2010.07351.x. Epub 2010 Sep 16.
8
Origins and evolution of antibiotic resistance.
Microbiol Mol Biol Rev. 2010 Sep;74(3):417-33. doi: 10.1128/MMBR.00016-10.
9
RNase R is a highly unstable protein regulated by growth phase and stress.
RNA. 2010 Apr;16(4):667-72. doi: 10.1261/rna.1981010. Epub 2010 Feb 25.
10
Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA.
Nucleic Acids Res. 2010 May;38(9):3094-105. doi: 10.1093/nar/gkp1253. Epub 2010 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验