Wang Zhong, Wang Yaqun, Wang Ningtao, Wang Jianxin, Wang Zuoheng, Vallejos C Eduardo, Wu Rongling
Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033, USA.
Brief Bioinform. 2014 Jan;15(1):30-42. doi: 10.1093/bib/bbs049. Epub 2012 Aug 27.
The formation of phenotypic traits, such as biomass production, tumor volume and viral abundance, undergoes a complex process in which interactions between genes and developmental stimuli take place at each level of biological organization from cells to organisms. Traditional studies emphasize the impact of genes by directly linking DNA-based markers with static phenotypic values. Functional mapping, derived to detect genes that control developmental processes using growth equations, has proven powerful for addressing questions about the roles of genes in development. By treating phenotypic formation as a cohesive system using differential equations, a different approach-systems mapping-dissects the system into interconnected elements and then map genes that determine a web of interactions among these elements, facilitating our understanding of the genetic machineries for phenotypic development. Here, we argue that genetic mapping can play a more important role in studying the genotype-phenotype relationship by filling the gaps in the biochemical and regulatory process from DNA to end-point phenotype. We describe a new framework, named network mapping, to study the genetic architecture of complex traits by integrating the regulatory networks that cause a high-order phenotype. Network mapping makes use of a system of differential equations to quantify the rule by which transcriptional, proteomic and metabolomic components interact with each other to organize into a functional whole. The synthesis of functional mapping, systems mapping and network mapping provides a novel avenue to decipher a comprehensive picture of the genetic landscape of complex phenotypes that underlie economically and biomedically important traits.
表型性状的形成,如生物量生产、肿瘤体积和病毒丰度,经历了一个复杂的过程,其中基因与发育刺激之间的相互作用发生在从细胞到生物体的生物组织的各个层面。传统研究通过将基于DNA的标记与静态表型值直接联系起来,强调基因的影响。功能图谱通过使用生长方程来检测控制发育过程的基因,已被证明在解决基因在发育中的作用问题上很强大。通过使用微分方程将表型形成视为一个凝聚系统,一种不同的方法——系统图谱——将系统分解为相互连接的元素,然后绘制决定这些元素之间相互作用网络的基因,有助于我们理解表型发育的遗传机制。在这里,我们认为基因图谱可以通过填补从DNA到终点表型的生化和调控过程中的空白,在研究基因型-表型关系中发挥更重要的作用。我们描述了一个名为网络图谱的新框架,通过整合导致高阶表型的调控网络来研究复杂性状的遗传结构。网络图谱利用一个微分方程系统来量化转录、蛋白质组和代谢组成分相互作用以组织成一个功能整体的规则。功能图谱、系统图谱和网络图谱的综合提供了一条新途径,以解读构成经济和生物医学重要性状基础的复杂表型的遗传景观的全面图景。