Suppr超能文献

体外生物矿化二氧化硅的光学性质。

Optical properties of in-vitro biomineralised silica.

机构信息

National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, Università del Salento, Lecce, Italy.

出版信息

Sci Rep. 2012;2:607. doi: 10.1038/srep00607. Epub 2012 Aug 29.

Abstract

Silicon is the second most common element on the Earth's crust and its oxide (SiO(2)) the most abundant mineral. Silica and silicates are widely used in medicine and industry as well as in micro- and nano-optics and electronics. However, the fabrication of glass fibres and components requires high temperature and non-physiological conditions, in contrast to biosilica structures in animals and plants. Here, we show for the first time the use of recombinant silicatein-α, the most abundant subunit of sponge proteins catalyzing biosilicification reactions, to direct the formation of optical waveguides in-vitro through soft microlithography. The artificial biosilica fibres mimic the natural sponge spicules, exhibiting refractive index values suitable for confinement of light within waveguides, with optical losses in the range of 5-10 cm(-1), suitable for application in lab-on-chips systems. This method extends biosilicification to the controlled fabrication of optical components by physiological processing conditions, hardly addressed by conventional technologies.

摘要

硅是地壳中第二丰富的元素,其氧化物(SiO(2))是最丰富的矿物。二氧化硅和硅酸盐广泛应用于医学和工业领域,以及微纳光学和电子学领域。然而,玻璃纤维和组件的制造需要高温和非生理条件,这与动植物中的生物硅质结构形成形成鲜明对比。在这里,我们首次展示了重组硅蛋白-α的应用,这是海绵蛋白中最丰富的亚基,可催化生物硅化反应,通过软微光刻在体外引导光学波导的形成。人工生物硅纤维模拟天然海绵骨针,表现出适合限制波导内光的折射率值,光学损耗在 5-10 cm(-1)范围内,适用于微流控芯片系统的应用。这种方法通过生理处理条件将生物硅化扩展到对光学组件的可控制造,这是传统技术难以解决的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7792/3429881/135591ab94cf/srep00607-f3.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验