Suppr超能文献

使用自动生成的投影图像进行荧光原位杂交 (FISH) 信号分析。

Fluorescence in situ hybridization (FISH) signal analysis using automated generated projection images.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Anal Cell Pathol (Amst). 2012;35(5-6):395-405. doi: 10.3233/ACP-2012-0068.

Abstract

Fluorescence in situ hybridization (FISH) tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD) schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D) image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.

摘要

荧光原位杂交(FISH)检测提供了有前途的分子成像生物标志物,可更准确和可靠地检测和诊断癌症和遗传疾病。由于当前手动 FISH 信号分析效率低且不一致,限制了其临床应用,因此开发自动化 FISH 图像扫描系统和计算机辅助检测(CAD)方案一直受到研究关注。为了在多光谱扫描模式下获取高分辨率的 FISH 图像,从单个标本中生成了大量具有多个三维(3-D)图像切片堆栈的图像数据。为了使自动化 FISH 检测在临床应用中被接受,对这些扫描图像进行自动化预处理以消除无用和冗余数据非常重要。在这项研究中,应用了双探测器荧光图像扫描系统来扫描带有 FISH 探针的染色体 X 的四个标本载玻片。开发了 CAD 方案来检测可分析的间期细胞,并将记录的多个成像切片中的 FISH 探针信号映射到 2-D 投影图像中。然后,CAD 方案应用于每个投影图像,使用自适应多阈值算法检测可分析的间期细胞,使用顶帽变换识别 FISH 探针信号,并计算正常细胞和异常细胞之间的比值。为了评估 CAD 的性能,观察者还独立地对 FISH 探针信号进行了目视检测。在四个测试样本中,CAD 和观察者之间在检测/计数 FISH 信号点方面的 Kappa 系数在 0.69 到 1.0 之间。该研究证明了应用 CAD 方案对自动生成的 2-D 投影图像进行自动化 FISH 信号分析的可行性。

相似文献

1
Fluorescence in situ hybridization (FISH) signal analysis using automated generated projection images.
Anal Cell Pathol (Amst). 2012;35(5-6):395-405. doi: 10.3233/ACP-2012-0068.
6
Signal amplification of FISH for automated detection using image cytometry.
Anal Cell Pathol. 1997 May;13(3):137-46. doi: 10.1155/1997/297216.
7
State-of-the-art FISHing: automated analysis of cytogenetic aberrations in interphase nuclei.
Cytometry A. 2012 Aug;81(8):649-63. doi: 10.1002/cyto.a.22082. Epub 2012 Jun 13.
10
Image enhancement for increased dot-counting efficiency in FISH.
J Microsc. 2007 Nov;228(Pt 2):211-26. doi: 10.1111/j.1365-2818.2007.01842.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验