Suppr超能文献

海洋微生物合成膦酸甲酯:有氧海洋中甲烷的一个来源。

Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean.

机构信息

Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA.

出版信息

Science. 2012 Aug 31;337(6098):1104-7. doi: 10.1126/science.1219875.

Abstract

Relative to the atmosphere, much of the aerobic ocean is supersaturated with methane; however, the source of this important greenhouse gas remains enigmatic. Catabolism of methylphosphonic acid by phosphorus-starved marine microbes, with concomitant release of methane, has been suggested to explain this phenomenon, yet methylphosphonate is not a known natural product, nor has it been detected in natural systems. Further, its synthesis from known natural products would require unknown biochemistry. Here we show that the marine archaeon Nitrosopumilus maritimus encodes a pathway for methylphosphonate biosynthesis and that it produces cell-associated methylphosphonate esters. The abundance of a key gene in this pathway in metagenomic data sets suggests that methylphosphonate biosynthesis is relatively common in marine microbes, providing a plausible explanation for the methane paradox.

摘要

相对于大气而言,海洋中有很大一部分区域的甲烷处于过饱和状态;然而,这种重要的温室气体的来源仍然是个谜。有人提出,磷饥饿的海洋微生物对甲基膦酸的分解代谢会伴随着甲烷的释放,可以用来解释这一现象,但甲基膦酸并不是一种已知的天然产物,也没有在自然系统中检测到。此外,从已知的天然产物中合成它需要未知的生物化学知识。在这里,我们证明海洋古菌 Nitrosopumilus maritimus 编码了一种甲基膦酸生物合成途径,并产生细胞相关的甲基膦酸酯。该途径中的一个关键基因在宏基因组数据集的丰度表明,甲基膦酸的生物合成在海洋微生物中相对普遍,为甲烷悖论提供了一个合理的解释。

相似文献

1
Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean.
Science. 2012 Aug 31;337(6098):1104-7. doi: 10.1126/science.1219875.
2
Methylphosphonic Acid Biosynthesis and Catabolism in Pelagic Archaea and Bacteria.
Methods Enzymol. 2018;605:351-426. doi: 10.1016/bs.mie.2018.01.039. Epub 2018 May 3.
3
Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria.
Nat Commun. 2014 Jul 7;5:4346. doi: 10.1038/ncomms5346.
4
Structural basis for methylphosphonate biosynthesis.
Science. 2017 Dec 8;358(6368):1336-1339. doi: 10.1126/science.aao3435.
5
Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.
Genome Res. 2014 Sep;24(9):1517-25. doi: 10.1101/gr.168245.113. Epub 2014 Jun 6.
7
Freshwater bacteria release methane as a byproduct of phosphorus acquisition.
Appl Environ Microbiol. 2016 Dec;82(23):6994-7003. doi: 10.1128/AEM.02399-16. Epub 2016 Sep 30.
9
Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep.
Nature. 2019 Apr;568(7750):108-111. doi: 10.1038/s41586-019-1063-0. Epub 2019 Mar 27.
10
Molecular tools for investigating ANME community structure and function.
Methods Enzymol. 2011;494:75-90. doi: 10.1016/B978-0-12-385112-3.00004-4.

引用本文的文献

1
Diverse marine species convert methylphosphonate to methane.
Mar Life Sci Technol. 2025 Feb 20;7(3):492-506. doi: 10.1007/s42995-025-00278-w. eCollection 2025 Aug.
2
Phosphonate-driven oxic CH production by sp. nov.: insights from marine and freshwater microbial adaptations to P-limitation.
ISME Commun. 2025 Jun 16;5(1):ycaf100. doi: 10.1093/ismeco/ycaf100. eCollection 2025 Jan.
4
Adaptive Responses of Cyanobacteria to Phosphate Limitation: A Focus on Marine Diazotrophs.
Environ Microbiol. 2024 Dec;26(12):e70023. doi: 10.1111/1462-2920.70023.
5
The microbial phosphorus cycle in aquatic ecosystems.
Nat Rev Microbiol. 2025 Apr;23(4):239-255. doi: 10.1038/s41579-024-01119-w. Epub 2024 Nov 11.
6
Correlation of methane production with physiological traits in IMS 101 grown with methylphosphonate at different temperatures.
Front Microbiol. 2024 Jun 4;15:1396369. doi: 10.3389/fmicb.2024.1396369. eCollection 2024.
7
Phosphonoalamides Reveal the Biosynthetic Origin of Phosphonoalanine Natural Products and a Convergent Pathway for Their Diversification.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202405052. doi: 10.1002/anie.202405052. Epub 2024 Jul 9.
8
Functional prediction of proteins from the human gut archaeome.
ISME Commun. 2024 Jan 10;4(1):ycad014. doi: 10.1093/ismeco/ycad014. eCollection 2024 Jan.
9
Transcriptomic Insights into Archaeal Nitrification in the Amundsen Sea Polynya, Antarctica.
J Microbiol. 2023 Nov;61(11):967-980. doi: 10.1007/s12275-023-00090-0. Epub 2023 Dec 7.
10
Oxic methane production from methylphosphonate in a large oligotrophic lake: limitation by substrate and organic carbon supply.
Appl Environ Microbiol. 2023 Dec 21;89(12):e0109723. doi: 10.1128/aem.01097-23. Epub 2023 Nov 30.

本文引用的文献

1
Structure-activity relationships of the phosphonate antibiotic dehydrophos.
Chem Commun (Camb). 2010 Nov 7;46(41):7694-6. doi: 10.1039/c0cc02958k. Epub 2010 Sep 27.
2
Structure and mechanism of enzymes involved in biosynthesis and breakdown of the phosphonates fosfomycin, dehydrophos, and phosphinothricin.
Arch Biochem Biophys. 2011 Jan 1;505(1):13-21. doi: 10.1016/j.abb.2010.09.012. Epub 2010 Sep 18.
3
Molecular cloning and heterologous expression of the dehydrophos biosynthetic gene cluster.
Chem Biol. 2010 Apr 23;17(4):402-11. doi: 10.1016/j.chembiol.2010.03.007.
4
Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633.
Chem Biol. 2010 Jan 29;17(1):28-37. doi: 10.1016/j.chembiol.2009.11.017.
5
The integrated microbial genomes system: an expanding comparative analysis resource.
Nucleic Acids Res. 2010 Jan;38(Database issue):D382-90. doi: 10.1093/nar/gkp887. Epub 2009 Oct 28.
6
Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria.
Nature. 2009 Oct 15;461(7266):976-9. doi: 10.1038/nature08465. Epub 2009 Sep 30.
7
Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses.
Environ Microbiol. 2010 Jan;12(1):222-38. doi: 10.1111/j.1462-2920.2009.02062.x. Epub 2009 Sep 29.
8
An unusual carbon-carbon bond cleavage reaction during phosphinothricin biosynthesis.
Nature. 2009 Jun 11;459(7248):871-4. doi: 10.1038/nature07972.
9
Biosynthesis of phosphonic and phosphinic acid natural products.
Annu Rev Biochem. 2009;78:65-94. doi: 10.1146/annurev.biochem.78.091707.100215.
10
Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria.
Environ Microbiol. 2009 May;11(5):1314-24. doi: 10.1111/j.1462-2920.2009.01869.x. Epub 2009 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验