Suppr超能文献

B-MYB 转录网络指导细胞周期进程和命运决定,以维持多能干细胞的自我更新和身份。

The B-MYB transcriptional network guides cell cycle progression and fate decisions to sustain self-renewal and the identity of pluripotent stem cells.

机构信息

Bioinformatics Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America.

出版信息

PLoS One. 2012;7(8):e42350. doi: 10.1371/journal.pone.0042350. Epub 2012 Aug 24.

Abstract

Embryonic stem cells (ESCs) are pluripotent and have unlimited self-renewal capacity. Although pluripotency and differentiation have been examined extensively, the mechanisms responsible for self-renewal are poorly understood and are believed to involve an unusual cell cycle, epigenetic regulators and pluripotency-promoting transcription factors. Here we show that B-MYB, a cell cycle regulated phosphoprotein and transcription factor critical to the formation of inner cell mass, is central to the transcriptional and co-regulatory networks that sustain normal cell cycle progression and self-renewal properties of ESCs. Phenotypically, B-MYB is robustly expressed in ESCs and induced pluripotent stem cells (iPSCs), and it is present predominantly in a hypo-phosphorylated state. Knockdown of B-MYB results in functional cell cycle abnormalities that involve S, G2 and M phases, and reduced expression of critical cell cycle regulators like ccnb1 and plk1. By conducting gene expression profiling on control and B-MYB deficient cells, ChIP-chip experiments, and integrative computational analyses, we unraveled a highly complex B-MYB-mediated transcriptional network that guides ESC self-renewal. The network encompasses critical regulators of all cell cycle phases and epigenetic regulators, pluripotency transcription factors, and differentiation determinants. B-MYB along with E2F1 and c-MYC preferentially co-regulate cell cycle target genes. B-MYB also co-targets genes regulated by OCT4, SOX2 and NANOG that are significantly associated with stem cell differentiation, embryonic development, and epigenetic control. Moreover, loss of B-MYB leads to a breakdown of the transcriptional hierarchy present in ESCs. These results coupled with functional studies demonstrate that B-MYB not only controls and accelerates cell cycle progression in ESCs it contributes to fate decisions and maintenance of pluripotent stem cell identity.

摘要

胚胎干细胞(ESCs)具有多能性和无限的自我更新能力。尽管多能性和分化已经得到了广泛的研究,但负责自我更新的机制仍知之甚少,据信涉及异常的细胞周期、表观遗传调节剂和多能性促进转录因子。在这里,我们表明 B-MYB,一种细胞周期调节的磷酸化蛋白和转录因子,对内细胞团的形成至关重要,是维持正常细胞周期进程和 ESC 自我更新特性的转录和共调节网络的核心。表型上,B-MYB 在 ESCs 和诱导多能干细胞(iPSCs)中强烈表达,并主要处于低磷酸化状态。B-MYB 的敲低导致功能细胞周期异常,涉及 S、G2 和 M 期,以及关键细胞周期调节剂如 ccnb1 和 plk1 的表达降低。通过对对照和 B-MYB 缺陷细胞进行基因表达谱分析、ChIP-chip 实验和综合计算分析,我们揭示了一个高度复杂的 B-MYB 介导的转录网络,该网络指导 ESC 的自我更新。该网络包含所有细胞周期阶段和表观遗传调节剂的关键调节剂、多能性转录因子和分化决定因素。B-MYB 与 E2F1 和 c-MYC 一起优先共调节细胞周期靶基因。B-MYB 还共同靶向 OCT4、SOX2 和 NANOG 调节的基因,这些基因与干细胞分化、胚胎发育和表观遗传控制密切相关。此外,B-MYB 的缺失导致 ESCs 中存在的转录层次结构的崩溃。这些结果加上功能研究表明,B-MYB 不仅控制和加速 ESCs 中的细胞周期进程,还促进命运决定和多能干细胞特性的维持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c5e/3427317/d68150127812/pone.0042350.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验