Suppr超能文献

鼠前肢肌肉的解剖、结构和生化多样性。

Anatomical, architectural, and biochemical diversity of the murine forelimb muscles.

机构信息

Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

出版信息

J Anat. 2012 Nov;221(5):443-51. doi: 10.1111/j.1469-7580.2012.01559.x. Epub 2012 Sep 2.

Abstract

We characterized the architecture, fiber type, titin isoform distribution, and collagen content of 27 portions of 22 muscles in the murine forelimb. The mouse forelimb was different from the human arm in that it had the extensor digitorum lateralis muscle and no brachioradialis muscle. Architecturally, the mouse forelimb differed from humans with regard to load bearing, having a much larger contribution from extensors than flexors. In mice, the extensor : flexor PCSA ratio is 2.7, whereas in humans it is only 1.4. When the architectural difference index was calculated, similarities became especially apparent between flexors and extensors of the distal forelimb, as well as pronators. Discriminant analysis revealed that biochemical measures of collagen, titin, and myosin heavy chain were all strong between-species discriminators. In terms of composition, when compared with similar muscles in humans, mice had, on average, faster muscles with higher collagen content and larger titin isoforms. This report establishes the anatomical and biochemical properties of mouse forelimb muscles. Given the prevalence of this species in biological studies, these data will be invaluable for studying the biological basis of mouse muscle structure and function.

摘要

我们对 22 块鼠前肢肌肉的 27 个部位进行了组织学、纤维类型、肌联蛋白同工型分布和胶原含量的分析。与人类手臂相比,鼠前肢有伸肌外侧肌,而没有肱桡肌。从力学角度来看,与人类相比,鼠前肢的伸肌比屈肌承受更大的负荷,其伸肌的占比远高于屈肌。在鼠中,伸肌:屈肌 CSA 比为 2.7,而在人类中仅为 1.4。当计算结构差异指数时,前肢远端的屈肌和伸肌以及旋前肌之间的相似性变得尤为明显。判别分析表明,胶原蛋白、肌联蛋白和肌球蛋白重链的生化指标在种间均有很强的判别能力。在组成方面,与人类相似的肌肉相比,鼠的肌肉通常更快,胶原含量更高,肌联蛋白同工型更大。本报告确立了鼠前肢肌肉的解剖学和生化特性。鉴于该物种在生物学研究中的普遍性,这些数据对于研究鼠肌肉结构和功能的生物学基础将是非常有价值的。

相似文献

1
Anatomical, architectural, and biochemical diversity of the murine forelimb muscles.
J Anat. 2012 Nov;221(5):443-51. doi: 10.1111/j.1469-7580.2012.01559.x. Epub 2012 Sep 2.
2
Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax).
J Exp Biol. 2015 Jan 15;218(Pt 2):194-205. doi: 10.1242/jeb.107128. Epub 2014 Dec 1.
3
Comparative forelimb myology and muscular architecture of a juvenile Malayan tapir (Tapirus indicus).
J Anat. 2020 Jan;236(1):85-97. doi: 10.1111/joa.13087. Epub 2019 Sep 13.
4
Architectural properties of distal forelimb muscles in horses, Equus caballus.
J Morphol. 2003 Oct;258(1):106-14. doi: 10.1002/jmor.10113.
6
Human skeletal muscle biochemical diversity.
J Exp Biol. 2012 Aug 1;215(Pt 15):2551-9. doi: 10.1242/jeb.069385.
7
Dimensions of forelimb muscles in orangutans and chimpanzees.
J Anat. 2009 Oct;215(4):373-82. doi: 10.1111/j.1469-7580.2009.01125.x. Epub 2009 Jul 9.
9
Functional anatomy of the gibbon forelimb: adaptations to a brachiating lifestyle.
J Anat. 2009 Sep;215(3):335-54. doi: 10.1111/j.1469-7580.2009.01109.x. Epub 2009 Jun 10.
10
Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles.
J Gen Physiol. 2005 Nov;126(5):461-80. doi: 10.1085/jgp.200509364. Epub 2005 Oct 17.

引用本文的文献

1
Harmonizing mouse anatomy terminology: a common language?
Mamm Genome. 2025 Sep 10. doi: 10.1007/s00335-025-10156-6.
5
Role of forelimb morphology in muscle sensorimotor functions during locomotion in the cat.
J Physiol. 2025 Jan;603(2):447-487. doi: 10.1113/JP287448. Epub 2024 Dec 20.
6
Challenging Sarcopenia: Exploring AdipoRon in Aging Skeletal Muscle as a Healthspan-Extending Shield.
Antioxidants (Basel). 2024 Sep 3;13(9):1073. doi: 10.3390/antiox13091073.
7
An output-null signature of inertial load in motor cortex.
Nat Commun. 2024 Aug 24;15(1):7309. doi: 10.1038/s41467-024-51750-7.
8
Loss of the long form of Plod2 phenocopies contractures of Bruck syndrome-osteogenesis imperfecta.
J Bone Miner Res. 2024 Sep 2;39(9):1240-1252. doi: 10.1093/jbmr/zjae124.
9
ROLE OF FORELIMB MORPHOLOGY IN MUSCLE SENSORIMOTOR FUNCTIONS DURING LOCOMOTION IN THE CAT.
bioRxiv. 2024 Jul 16:2024.07.11.603106. doi: 10.1101/2024.07.11.603106.
10
FARMS: Framework for Animal and Robot Modeling and Simulation.
bioRxiv. 2025 Feb 21:2023.09.25.559130. doi: 10.1101/2023.09.25.559130.

本文引用的文献

1
Human skeletal muscle biochemical diversity.
J Exp Biol. 2012 Aug 1;215(Pt 15):2551-9. doi: 10.1242/jeb.069385.
2
Stability and manoeuvrability of terrestrial vertebrates.
Integr Comp Biol. 2002 Feb;42(1):158-64. doi: 10.1093/icb/42.1.158.
3
Tuning passive mechanics through differential splicing of titin during skeletal muscle development.
Biophys J. 2009 Oct 21;97(8):2277-86. doi: 10.1016/j.bpj.2009.07.041.
4
Human bipeds use quadrupedal coordination during locomotion.
Ann N Y Acad Sci. 2009 May;1164:97-103. doi: 10.1111/j.1749-6632.2008.03710.x.
7
Scaling of muscle architecture and fiber types in the rat hindlimb.
J Exp Biol. 2008 Jul;211(Pt 14):2336-45. doi: 10.1242/jeb.017640.
8
A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms.
J Biomech. 2008;41(3):610-9. doi: 10.1016/j.jbiomech.2007.10.004. Epub 2007 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验