Suppr超能文献

大鼠后肢的三维模型:肌肉骨骼几何结构和肌肉力臂

A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms.

作者信息

Johnson Will L, Jindrich Devin L, Roy Roland R, Reggie Edgerton V

机构信息

Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA 90095-1761, USA.

出版信息

J Biomech. 2008;41(3):610-9. doi: 10.1016/j.jbiomech.2007.10.004. Epub 2007 Dec 3.

Abstract

As a first step towards developing a dynamic model of the rat hindlimb, we measured muscle attachment and joint center coordinates relative to bony landmarks using stereophotogrammetry. Using these measurements, we analyzed muscle moment arms as functions of joint angle for most hindlimb muscles, and tested the hypothesis that postural change alone is sufficient to alter the function of selected muscles of the leg. We described muscle attachment sites as second-order curves. The length of the fit parabola and residual errors in the orthogonal directions give an estimate of muscle attachment sizes, which are consistent with observations made during dissection. We modeled each joint as a moving point dependent on joint angle; relative endpoint errors less than 7% indicate this method as accurate. Most muscles have moment arms with a large range across the physiological domain of joint angles, but their moment arms peak and vary little within the locomotion domain. The small variation in moment arms during locomotion potentially simplifies the neural control requirements during this phase. The moment arms of a number of muscles cross zero as angle varies within the quadrupedal locomotion domain, indicating they are intrinsically stabilizing. However, in the bipedal locomotion domain, the moment arms of these muscles do not cross zero and thus are no longer intrinsically stabilizing. We found that muscle function is largely determined by the change in moment arm with joint angle, particularly the transition from quadrupedal to bipedal posture, which may alter an intrinsically stabilizing arrangement or change the control burden.

摘要

作为建立大鼠后肢动态模型的第一步,我们使用立体摄影测量法测量了相对于骨标志的肌肉附着点和关节中心坐标。利用这些测量数据,我们分析了大多数后肢肌肉的肌肉力臂作为关节角度的函数,并检验了仅姿势变化就足以改变腿部选定肌肉功能的假设。我们将肌肉附着点描述为二阶曲线。拟合抛物线的长度和正交方向上的残余误差给出了肌肉附着大小的估计值,这与解剖过程中的观察结果一致。我们将每个关节建模为一个依赖于关节角度的移动点;相对端点误差小于7%表明该方法是准确的。大多数肌肉的力臂在关节角度的生理范围内有很大的范围,但它们的力臂在运动范围内达到峰值且变化很小。运动过程中力臂的小变化可能简化了这一阶段的神经控制要求。在四足运动范围内,随着角度的变化,一些肌肉的力臂会穿过零,这表明它们具有内在的稳定性。然而,在双足运动范围内,这些肌肉的力臂不会穿过零,因此不再具有内在的稳定性。我们发现,肌肉功能在很大程度上由力臂随关节角度的变化决定,特别是从四足姿势到双足姿势的转变,这可能会改变一种内在稳定的排列或改变控制负担。

相似文献

1
A three-dimensional model of the rat hindlimb: musculoskeletal geometry and muscle moment arms.
J Biomech. 2008;41(3):610-9. doi: 10.1016/j.jbiomech.2007.10.004. Epub 2007 Dec 3.
3
Biarticular hip extensor and knee flexor muscle moment arms of the feline hindlimb.
J Biomech. 2007;40(15):3448-57. doi: 10.1016/j.jbiomech.2007.05.021. Epub 2007 Jul 12.
4
Morphological analysis of the hindlimb in apes and humans. II. Moment arms.
J Anat. 2006 Jun;208(6):725-42. doi: 10.1111/j.1469-7580.2006.00564.x.
5
Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.
J Anat. 2016 Oct;229(4):514-35. doi: 10.1111/joa.12461. Epub 2016 May 12.
6
Muscle moment arms of pelvic limb muscles of the ostrich (Struthio camelus).
J Anat. 2007 Sep;211(3):313-24. doi: 10.1111/j.1469-7580.2007.00762.x. Epub 2007 Jun 30.
7
Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion.
J Anat. 2010 Apr;216(4):446-62. doi: 10.1111/j.1469-7580.2009.01209.x.

引用本文的文献

1
Diaphragm Muscle: A Pump That Can Not Fail.
Physiol Rev. 2025 Jul 11. doi: 10.1152/physrev.00043.2024.
2
A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis.
Front Bioeng Biotechnol. 2024 Jul 25;12:1408015. doi: 10.3389/fbioe.2024.1408015. eCollection 2024.
4
Ten steps to becoming a musculoskeletal simulation expert: A half-century of progress and outlook for the future.
J Biomech. 2023 Jun;154:111623. doi: 10.1016/j.jbiomech.2023.111623. Epub 2023 May 10.
5
Comprehensive dynamic and kinematic analysis of the rodent hindlimb during over ground walking.
Sci Rep. 2022 Nov 16;12(1):19725. doi: 10.1038/s41598-022-20288-3.
6
A musculoskeletal finite element model of rat knee joint for evaluating cartilage biomechanics during gait.
PLoS Comput Biol. 2022 Jun 3;18(6):e1009398. doi: 10.1371/journal.pcbi.1009398. eCollection 2022 Jun.
7
A Whole-Body Musculoskeletal Model of the Mouse.
IEEE Access. 2021;9:163861-163881. doi: 10.1109/access.2021.3133078. Epub 2021 Dec 6.
8
Detection of epimuscular myofascial forces by Golgi tendon organs.
Exp Brain Res. 2022 Jan;240(1):147-158. doi: 10.1007/s00221-021-06242-1. Epub 2021 Oct 22.
9
Location of brachial plexus birth injury affects functional outcomes in a rat model.
J Orthop Res. 2022 Jun;40(6):1281-1292. doi: 10.1002/jor.25173. Epub 2021 Sep 5.
10
The Effects of Mechanical Scale on Neural Control and the Regulation of Joint Stability.
Int J Mol Sci. 2021 Feb 18;22(4):2018. doi: 10.3390/ijms22042018.

本文引用的文献

1
Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function.
Neuromodulation. 2001 Oct;4(4):187-95. doi: 10.1046/j.1525-1403.2001.00187.x.
2
OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats.
Brain. 2008 Jan;131(Pt 1):264-76. doi: 10.1093/brain/awm267. Epub 2007 Dec 3.
3
Neuromechanical control of locomotion in the rat.
J Neurotrauma. 2005 Apr;22(4):442-65. doi: 10.1089/neu.2005.22.442.
4
Three-dimensional model of the feline hindlimb.
J Morphol. 2004 Jul;261(1):118-29. doi: 10.1002/jmor.10233.
5
The rat lumbosacral spinal cord adapts to robotic loading applied during stance.
J Neurophysiol. 2002 Dec;88(6):3108-17. doi: 10.1152/jn.01050.2001.
6
Dynamic stabilization of rapid hexapedal locomotion.
J Exp Biol. 2002 Sep;205(Pt 18):2803-23. doi: 10.1242/jeb.205.18.2803.
7
Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells.
Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3024-9. doi: 10.1073/pnas.052678899. Epub 2002 Feb 26.
8
Passive or active immunization with myelin basic protein promotes recovery from spinal cord contusion.
J Neurosci. 2000 Sep 1;20(17):6421-30. doi: 10.1523/JNEUROSCI.20-17-06421.2000.
9
Measurement of the screw-home motion of the knee is sensitive to errors in axis alignment.
J Biomech. 2000 Aug;33(8):1029-34. doi: 10.1016/s0021-9290(00)00056-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验