Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain.
J Chem Phys. 2012 Aug 28;137(8):084902. doi: 10.1063/1.4746020.
(2)H-nuclear magnetic resonance (NMR) and neutron scattering (NS) on isotopically labelled samples have been combined to investigate the structure and dynamics of polyvinylpyrrolidone (PVP) aqueous solutions (4 water molecules/monomeric unit). Neutron diffraction evidences the nanosegregation of polymer main-chains and water molecules leading to the presence of water clusters. NMR reveals the same characteristic times and spectral shape as those of the slower process observed by broadband dielectric spectroscopy in this system [S. Cerveny et al., J. Chem. Phys. 128, 044901 (2008)]. The temperature dependence of such relaxation time crosses over from a cooperative-like behavior at high temperatures to an Arrhenius behavior at lower temperatures. Below the crossover, NMR features the spectral shape as due to a symmetric distribution of relaxation times and the underlying motions as isotropic. NS results on the structural relaxation of both components-isolated via H/D labeling-show (i) anomalously stretched and non-Gaussian functional forms of the intermediate scattering functions and (ii) a strong dynamic asymmetry between the components that increases with decreasing temperature. Strong heterogeneities associated to the nanosegregated structure and the dynamic asymmetry are invoked to explain the observed anomalies. On the other hand, at short times the atomic displacements are strongly coupled for PVP and water, presumably due to H-bond formation and densification of the sample upon hydration.
(2)对同位素标记样品的 H-核磁共振(NMR)和中子散射(NS)进行了组合,以研究聚乙烯吡咯烷酮(PVP)水溶液(4 个水分子/单体单元)的结构和动力学。中子衍射证明了聚合物主链和水分子的纳米分离导致水团簇的存在。NMR 揭示了与在该体系中通过宽带介电光谱观察到的较慢过程相同的特征时间和光谱形状[S. Cerveny 等人,J. Chem. Phys. 128, 044901 (2008)]。这种弛豫时间的温度依赖性从高温下的协同行为转变为低温下的 Arrhenius 行为。在交叉点以下,NMR 的特征是由于弛豫时间的对称分布和各向同性的基础运动导致的光谱形状。通过 H/D 标记对两种组分(隔离)的结构弛豫的 NS 结果表明:(i)中间散射函数具有异常拉伸和非高斯函数形式;(ii)组分之间存在强烈的动态不对称性,随着温度的降低而增加。与纳米分离结构和动态不对称性相关的强烈非均质性被认为是解释观察到的异常的原因。另一方面,在短时间内,PVP 和水的原子位移强烈耦合,可能是由于氢键形成和样品在水合作用下的致密化。