Université Pierre et Marie Curie-Paris6, UMR S, Paris, France.
Epidemics. 2012 Aug;4(3):132-8. doi: 10.1016/j.epidem.2012.06.001. Epub 2012 Jun 13.
Influenza infection natural history is often described as a progression through four successive stages: Susceptible-Exposed/Latent-Infectious-Removed (SEIR). The duration of each stage determines the average generation time, the time between infection of a case and infection of his/her infector. Recently, several authors have justified somewhat arbitrary choices in stage durations by how close the resulting generation time distribution was to viral excretion over time after infection. Taking this reasoning one step further, we propose that the viral excretion profile over time can be used directly to estimate the required parameters in an SEIR model. In our approach, the latency and infectious period distributions are estimated by minimizing the Kullback-Leibler divergence between the model-based generation time probability density function and the normalized average viral excretion profile. Following this approach, we estimated that the latency and infectious period last respectively 1.6 and 1.0 days on average using excretion profiles from experimental infections. Interestingly, we find that only 5% of cases are infectious for more than 2.9 days. We also discuss the consequences of these estimates for the evaluation of the efficacy of control measures such as isolation or treatment. We estimate that, under a best-case scenario where symptoms appear at the end of the latency period, index cases must be isolated or treated at most within 16h after symptoms onset to avoid 50% of secondary cases. This study provides the first estimates of latency and infectious period for influenza based directly on viral excretion data. It provides additional evidence that isolation or treatment of cases would be effective only if adopted shortly after symptoms onset, and shows that four days of isolation may be enough to avoid most transmissions.
易感-暴露/潜伏期-传染性-清除(SEIR)。每个阶段的持续时间决定了平均代时,即病例感染到其感染者感染之间的时间。最近,几位作者通过感染后随时间推移的病毒排出与生成时间分布的接近程度来证明阶段持续时间的选择有些任意。更进一步,我们提出可以直接使用随时间推移的病毒排出谱来估计 SEIR 模型中的所需参数。在我们的方法中,潜伏期和传染性期分布是通过最小化基于模型的生成时间概率密度函数和归一化平均病毒排出谱之间的 Kullback-Leibler 散度来估计的。按照这种方法,我们使用实验感染的排出谱来估计潜伏期和传染性期分别平均持续 1.6 天和 1.0 天。有趣的是,我们发现只有 5%的病例的传染性超过 2.9 天。我们还讨论了这些估计对评估隔离或治疗等控制措施效果的影响。我们估计,在症状出现在潜伏期结束时的最佳情况下,必须在症状出现后最多 16 小时内对索引病例进行隔离或治疗,以避免 50%的继发病例。本研究首次基于病毒排出数据直接估计流感的潜伏期和传染性期。它提供了更多证据表明,只有在症状出现后不久采取隔离或治疗措施才有效,并表明四天的隔离可能足以避免大多数传播。