Department of Chemical and Biological Engineering, Centre for Catalysis Research and Innovation, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, Canada K1N 6N5.
Bioresour Technol. 2012 Nov;123:318-23. doi: 10.1016/j.biortech.2012.07.005. Epub 2012 Jul 13.
Using glycerol from biodiesel production as a fuel in a microbial fuel cell (MFC) will generate electricity and value-added by-products from what is currently considered waste. This research screened Escherichia coli W3110 (ATCC 27325) and a mixed culture enriched from compost (AR2) as anodic biocatalysts in a mediatorless glycerol-oxidizing MFC. In an H-type MFC, the mixed culture AR2 biocatalyst produced a maximum power density of 11.7mWm(-2) compared to 9.8mWm(-2) using E. coli W3110 as the anodic catalyst. In batch operation of the fuel cell, the mixed culture AR2 was able to anaerobically consume 29g/L of glycerol compared to only 3.3g/L using the E. coli strain. The mixed culture was also shown to concurrently produce 1,3-propanediol, a value-added product, and electricity from a pure glycerol feedstock in an MFC.
利用生物柴油生产中的甘油作为微生物燃料电池(MFC)的燃料,将从目前被视为废物的物质中产生电能和高附加值的副产品。本研究筛选了大肠杆菌 W3110(ATCC 27325)和从堆肥中富集的混合培养物(AR2)作为无介体甘油氧化 MFC 的阳极生物催化剂。在 H 型 MFC 中,与使用大肠杆菌 W3110 作为阳极催化剂相比,混合培养物 AR2 生物催化剂产生的最大功率密度为 11.7mWm(-2)。在燃料电池的批量运行中,与使用大肠杆菌菌株相比,混合培养物 AR2 能够在厌氧条件下消耗 29g/L 的甘油,而仅消耗 3.3g/L。混合培养物还被证明能够在 MFC 中从纯甘油原料中同时生产出高附加值产品 1,3-丙二醇和电能。