Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
J Mol Biol. 2012 Nov 9;423(5):736-51. doi: 10.1016/j.jmb.2012.08.020. Epub 2012 Aug 29.
Lysosomal enzymes catalyze the breakdown of macromolecules in the cell. In humans, loss of activity of a lysosomal enzyme leads to an inherited metabolic defect known as a lysosomal storage disorder. The human lysosomal enzyme galactosamine-6-sulfatase (GALNS, also known as N-acetylgalactosamine-6-sulfatase and GalN6S; E.C. 3.1.6.4) is deficient in patients with the lysosomal storage disease mucopolysaccharidosis IV A (also known as MPS IV A and Morquio A). Here, we report the three-dimensional structure of human GALNS, determined by X-ray crystallography at 2.2Å resolution. The structure reveals a catalytic gem diol nucleophile derived from modification of a cysteine side chain. The active site of GALNS is a large, positively charged trench suitable for binding polyanionic substrates such as keratan sulfate and chondroitin-6-sulfate. Enzymatic assays on the insect-cell-expressed human GALNS indicate activity against synthetic substrates and inhibition by both substrate and product. Mapping 120 MPS IV A missense mutations onto the structure reveals that a majority of mutations affect the hydrophobic core of the structure, indicating that most MPS IV A cases result from misfolding of GALNS. Comparison of the structure of GALNS to paralogous sulfatases shows a wide variety of active-site geometries in the family but strict conservation of the catalytic machinery. Overall, the structure and the known mutations establish the molecular basis for MPS IV A and for the larger MPS family of diseases.
溶酶体酶催化细胞内大分子的分解。在人类中,溶酶体酶活性的丧失导致一种遗传性代谢缺陷,称为溶酶体贮积症。人类溶酶体酶半乳糖胺-6-硫酸酯酶(GALNS,也称为 N-乙酰半乳糖胺-6-硫酸酯酶和 GalN6S;EC 3.1.6.4)在溶酶体贮积病粘多糖贮积症 IV A(也称为 MPS IV A 和 Morquio A)患者中缺乏。在这里,我们通过 X 射线晶体学以 2.2Å 的分辨率确定了人 GALNS 的三维结构。该结构揭示了一个催化的 gem 二醇亲核体,源自半胱氨酸侧链的修饰。GALNS 的活性位点是一个大的、带正电荷的沟槽,适合结合多阴离子底物,如硫酸角质素和硫酸软骨素-6。在昆虫细胞表达的人 GALNS 上进行的酶促测定表明对合成底物有活性,并且底物和产物都有抑制作用。将 120 种 MPS IV A 错义突变映射到结构上表明,大多数突变影响结构的疏水区,表明大多数 MPS IV A 病例是由于 GALNS 的错误折叠引起的。将 GALNS 的结构与同源硫酸酯酶进行比较表明,该家族中的活性位点几何形状多种多样,但催化机制严格保守。总体而言,结构和已知突变确立了 MPS IV A 以及更大的 MPS 疾病家族的分子基础。