Institut Pasteur, Groupe Imagerie et Modélisation, 75015 Paris, France.
Curr Biol. 2012 Oct 23;22(20):1881-90. doi: 10.1016/j.cub.2012.07.069. Epub 2012 Aug 30.
Despite the absence of internal membranes, the nucleus of eukaryotic cells is spatially organized, with chromosomes and individual loci occupying dynamic, but nonrandom, spatial positions relative to nuclear landmarks and to each other. These positional preferences correlate with gene expression and DNA repair, recombination, and replication. Yet the principles that govern nuclear organization remain poorly understood and detailed predictive models are lacking.
We present a computational model of dynamic chromosome configurations in the interphase yeast nucleus that is based on first principles and is able to statistically predict the positioning of any locus in nuclear space. Despite its simplicity, the model agrees with extensive previous and new measurements on locus positioning and with genome-wide DNA contact frequencies. Notably, our model recapitulates the position and morphology of the nucleolus, the observed variations in locus positions, and variations in contact frequencies within and across chromosomes, as well as subchromosomal contact features. The model is also able to correctly predict nuclear reorganization accompanying a reduction in ribosomal DNA transcription, and sites of chromosomal rearrangements tend to occur where the model predicted high contact frequencies.
Our results suggest that large-scale yeast nuclear architecture can be largely understood as a consequence of generic properties of crowded polymers rather than of specific DNA-binding factors and that configurations of chromosomes and DNA contacts are dictated mainly by genomic location and chromosome lengths. Our model provides a quantitative framework to understand and predict large-scale spatial genome organization and its interplay with functional processes.
尽管真核细胞的细胞核没有内膜,但它在空间上是有组织的,染色体和各个基因座相对于核标记和彼此占据着动态但非随机的空间位置。这些位置偏好与基因表达以及 DNA 修复、重组和复制相关。然而,支配核组织的原则仍未被充分理解,也缺乏详细的预测模型。
我们提出了一个基于第一性原理的酵母间期细胞核中动态染色体构象的计算模型,该模型能够从统计学上预测核空间中任何基因座的位置。尽管该模型很简单,但它与之前和新的大量关于基因座定位和全基因组 DNA 接触频率的测量结果一致。值得注意的是,我们的模型再现了核仁的位置和形态、基因座位置的变化以及染色体内部和跨染色体的接触频率的变化,以及亚染色体接触特征。该模型还能够正确预测伴随核糖体 DNA 转录减少的核重排,并且染色体重排的部位往往出现在模型预测的高接触频率的地方。
我们的结果表明,大规模酵母核架构可以在很大程度上理解为拥挤聚合物的一般性质而不是特定 DNA 结合因子的结果,并且染色体和 DNA 接触的构象主要由基因组位置和染色体长度决定。我们的模型提供了一个定量框架来理解和预测大规模空间基因组组织及其与功能过程的相互作用。