Suppr超能文献

铜绿假单胞菌在生物膜中的灵活生存策略使其适应性比白色念珠菌更强。

Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans.

机构信息

Institute for Interfacial Engineering, University of Stuttgart, Stuttgart, Germany.

出版信息

Mol Cell Proteomics. 2012 Dec;11(12):1652-69. doi: 10.1074/mcp.M112.017673. Epub 2012 Aug 31.

Abstract

The majority of microorganisms persist in nature as surface-attached communities often surrounded by an extracellular matrix, called biofilms. Most natural biofilms are not formed by a single species but by multiple species. Microorganisms not only cooperate as in some multispecies biofilms but also compete for available nutrients. The Gram-negative bacterium Pseudomonas aeruginosa and the polymorphic fungus Candida albicans are two opportunistic pathogens that are often found coexisting in a human host. Several models of mixed biofilms have been reported for these organisms showing antagonistic behavior. To investigate the interaction of P. aeruginosa and C. albicans in more detail, we analyzed the secretome of single and mixed biofilms of both organisms using MALDI-TOF MS/MS at several time points. Overall 247 individual proteins were identified, 170 originated from P. aeruginosa and 77 from C. albicans. Only 39 of the 131 in mixed biofilms identified proteins were assigned to the fungus whereby the remaining 92 proteins belonged to P. aeruginosa. In single-species biofilms, both organisms showed a higher diversity of proteins with 73 being assigned to C. albicans and 154 to P. aeruginosa. Most interestingly, P. aeruginosa in the presence of C. albicans secreted 16 proteins in significantly higher amounts or exclusively among other virulence factors such as exotoxin A and iron acquisition systems. In addition, the high affinity iron-binding siderophore pyoverdine was identified in mixed biofilms but not in bacterial biofilms, indicating that P. aeruginosa increases its capability to sequester iron in competition with C. albicans. In contrast, C. albicans metabolism was significantly reduced, including a reduction in detectable iron acquisition proteins. The results obtained in this study show that microorganisms not only compete with the host for essential nutrients but also strongly with the present microflora in order to gain a competitive advantage.

摘要

大多数微生物以附着在表面的群落形式存在,这些群落通常被称为生物膜,周围环绕着细胞外基质。大多数天然生物膜不是由单一物种形成的,而是由多种物种形成的。微生物不仅在某些多物种生物膜中合作,而且还为可用营养物质竞争。革兰氏阴性菌铜绿假单胞菌和多态真菌白色念珠菌是两种机会性病原体,经常在人类宿主中共存。已经报道了这两种生物体的几种混合生物膜模型,这些模型显示出拮抗行为。为了更详细地研究铜绿假单胞菌和白色念珠菌的相互作用,我们使用 MALDI-TOF MS/MS 在几个时间点分析了这两种生物体的单一和混合生物膜的分泌组。总共鉴定出 247 种单个蛋白质,其中 170 种来自铜绿假单胞菌,77 种来自白色念珠菌。在混合生物膜中鉴定出的 131 种蛋白质中,只有 39 种被分配给真菌,其余 92 种蛋白质属于铜绿假单胞菌。在单物种生物膜中,两种生物体的蛋白质多样性更高,其中 73 种被分配给白色念珠菌,154 种被分配给铜绿假单胞菌。最有趣的是,在存在白色念珠菌的情况下,铜绿假单胞菌分泌了 16 种蛋白质,其含量明显更高,或者是其他毒力因子,如外毒素 A 和铁摄取系统。此外,在混合生物膜中鉴定出了高亲和力铁结合铁载体吡咯并[2,1-f][1,10]菲咯啉,但在细菌生物膜中没有,这表明铜绿假单胞菌在与白色念珠菌竞争时增加了其铁螯合能力。相反,白色念珠菌的新陈代谢明显减少,包括可检测到的铁摄取蛋白减少。本研究的结果表明,微生物不仅与宿主争夺必需营养物质,而且还与当前的微生物区系强烈竞争,以获得竞争优势。

相似文献

1
Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans.
Mol Cell Proteomics. 2012 Dec;11(12):1652-69. doi: 10.1074/mcp.M112.017673. Epub 2012 Aug 31.
2
4
Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.
PLoS Pathog. 2015 Aug 27;11(8):e1005129. doi: 10.1371/journal.ppat.1005129. eCollection 2015 Aug.
6
Role of Vfr in regulating exotoxin A production by Pseudomonas aeruginosa.
Microbiology (Reading). 2009 Jul;155(Pt 7):2265-2273. doi: 10.1099/mic.0.028373-0. Epub 2009 Apr 23.
8
Both Pseudomonas aeruginosa and Candida albicans Accumulate Greater Biomass in Dual-Species Biofilms under Flow.
mSphere. 2021 Jun 30;6(3):e0041621. doi: 10.1128/mSphere.00416-21. Epub 2021 Jun 23.

引用本文的文献

1
Antagonistic effect of on .
Front Fungal Biol. 2025 Jul 10;6:1613244. doi: 10.3389/ffunb.2025.1613244. eCollection 2025.
2
Impact of overlapping fungal infection on the occurrence and prognosis of carbapenem-resistant gram-negative bacilli infection.
Front Cell Infect Microbiol. 2025 May 30;15:1523233. doi: 10.3389/fcimb.2025.1523233. eCollection 2025.
3
In Vitro Analysis of Interactions Between and During Biofilm Formation.
Antibiotics (Basel). 2025 May 14;14(5):504. doi: 10.3390/antibiotics14050504.
4
Who arrived first? Priority effects on Candida albicans and Pseudomonas aeruginosa dual biofilms.
Commun Biol. 2025 Feb 3;8(1):160. doi: 10.1038/s42003-025-07609-8.
5
Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation.
Biofilm. 2023 Sep 29;6:100160. doi: 10.1016/j.bioflm.2023.100160. eCollection 2023 Dec 15.
6
Species Induce the Production of Siderophores by in a Cystic Fibrosis Mimic Environment.
J Fungi (Basel). 2023 Apr 22;9(5):502. doi: 10.3390/jof9050502.
7
Interspecies and Intrastrain Interplay among spp. Parasites.
Microorganisms. 2022 Sep 21;10(10):1883. doi: 10.3390/microorganisms10101883.
8
A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in .
Front Microbiol. 2021 Sep 16;12:632658. doi: 10.3389/fmicb.2021.632658. eCollection 2021.
9
Challenges in Drug Discovery for Intracellular Bacteria.
Pathogens. 2021 Sep 11;10(9):1172. doi: 10.3390/pathogens10091172.
10
The Role of Fatty Acid Metabolites in Vaginal Health and Disease: Application to Candidiasis.
Front Microbiol. 2021 Jul 2;12:705779. doi: 10.3389/fmicb.2021.705779. eCollection 2021.

本文引用的文献

2
Candida albicans, a major human fungal pathogen.
J Microbiol. 2011 Apr;49(2):171-7. doi: 10.1007/s12275-011-1064-7. Epub 2011 May 3.
4
Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms.
Mol Microbiol. 2010 Dec;78(6):1379-92. doi: 10.1111/j.1365-2958.2010.07414.x. Epub 2010 Oct 18.
5
Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes.
Nucleic Acids Res. 2011 Jan;39(Database issue):D596-600. doi: 10.1093/nar/gkq869. Epub 2010 Oct 6.
7
Mass spectrometric analysis of the secretome of Candida albicans.
Yeast. 2010 Aug;27(8):661-72. doi: 10.1002/yea.1775.
8
Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila.
Environ Microbiol. 2010 Jun;12(6):1787-802. doi: 10.1111/j.1462-2920.2010.02271.x.
9
Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development.
BMC Microbiol. 2010 Apr 25;10:125. doi: 10.1186/1471-2180-10-125.
10
Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans.
Microbiology (Reading). 2010 May;156(Pt 5):1476-1486. doi: 10.1099/mic.0.037549-0. Epub 2010 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验