Lopez-Medina Eduardo, Fan Di, Coughlin Laura A, Ho Evi X, Lamont Iain L, Reimmann Cornelia, Hooper Lora V, Koh Andrew Y
Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America.
Department of Biochemistry, University of Otago, Dunedin, New Zealand.
PLoS Pathog. 2015 Aug 27;11(8):e1005129. doi: 10.1371/journal.ppat.1005129. eCollection 2015 Aug.
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.
细菌与真菌的相互作用具有重要的生理和医学影响,但其作用机制尚不清楚。肠道中栖息着数万亿微生物,细菌与真菌的相互作用可能很重要。利用微生物胃肠道定植和传播的中性粒细胞减少小鼠模型,我们发现白色念珠菌通过抑制铜绿假单胞菌的绿脓菌素和绿脓杆菌素基因表达来抑制该菌的毒力,而这两种基因在铁摄取和毒力方面起着关键作用。相应地,删除铜绿假单胞菌的绿脓菌素和绿脓杆菌素基因会减弱其毒力。热灭活的白色念珠菌对铜绿假单胞菌没有影响,而白色念珠菌分泌的蛋白质可直接抑制铜绿假单胞菌的绿脓杆菌素和绿脓菌素表达,并在小鼠中抑制铜绿假单胞菌的毒力。有趣的是,抑制或删除绿脓菌素和绿脓杆菌素基因对铜绿假单胞菌在胃肠道定植的能力没有影响,但会降低其对培养的结肠细胞的细胞毒性作用。最后,口服铁补充剂可恢复在铜绿假单胞菌和白色念珠菌定植小鼠中铜绿假单胞菌的毒力。总之,我们的研究结果揭示了细菌与真菌的相互作用如何调节肠道中细菌的毒力。先前描述的细菌与真菌的拮抗相互作用主要集中在生长抑制或定植抑制/调节上,但在这里我们描述了一种新的观察结果,即真菌抑制对毒力至关重要但对定植不重要的细菌效应物。这些发现验证了使用哺乳动物模型系统来探索多微生物、多界感染的复杂性,以便确定预防微生物疾病的新治疗靶点。