Suppr超能文献

在具有直线、发散和收敛部分的微通道中红细胞运动和变形的可视化研究。

Visualization study of motion and deformation of red blood cells in a microchannel with straight, divergent and convergent sections.

作者信息

Chen Bin, Guo Fang, Xiang Hao

机构信息

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049 People's Republic of China.

出版信息

J Biol Phys. 2011 Sep;37(4):429-40. doi: 10.1007/s10867-011-9224-x. Epub 2011 May 11.

Abstract

The size of red blood cells (RBC) is on the same order as the diameter of microvascular vessels. Therefore, blood should be regarded as a two-phase flow system of RBCs suspended in plasma rather than a continuous medium of microcirculation. It is of great physiological and pathological significance to investigate the effects of deformation and aggregation of RBCs on microcirculation. In this study, a visualization experiment was conducted to study the microcirculatory behavior of RBCs in suspension. Motion and deformation of RBCs in a microfluidic chip with straight, divergent, and convergent microchannel sections have been captured by microscope and high-speed camera. Meanwhile, deformation and movement of RBCs were investigated under different viscosity, hematocrit, and flow rate in this system. For low velocity and viscosity, RBCs behaved in their normal biconcave disc shape and their motion was found as a flipping motion: they not only deformed their shapes along the flow direction, but also rolled and rotated themselves. RBCs were also found to aggregate, forming rouleaux at very low flow rate and viscosity. However, for high velocity and viscosity, RBCs deformed obviously under the shear stress. They elongated along the flow direction and performed a tank-treading motion.

摘要

红细胞(RBC)的大小与微血管的直径处于同一量级。因此,血液应被视为悬浮在血浆中的红细胞的两相流系统,而不是微循环的连续介质。研究红细胞的变形和聚集对微循环的影响具有重要的生理和病理意义。在本研究中,进行了一项可视化实验,以研究悬浮红细胞的微循环行为。通过显微镜和高速摄像机捕捉了红细胞在具有直、发散和会聚微通道段的微流控芯片中的运动和变形。同时,研究了该系统中不同粘度、血细胞比容和流速下红细胞的变形和运动。在低速和低粘度情况下,红细胞呈现正常的双凹圆盘形状,其运动表现为翻转运动:它们不仅沿流动方向变形,还会滚动和自转。还发现红细胞会聚集,在极低的流速和粘度下形成叠连。然而,在高流速和高粘度情况下,红细胞在剪切应力下明显变形。它们沿流动方向伸长并进行坦克履带式运动。

相似文献

3
Blood cell distribution in small and large vessels: Effects of wall and rotating motion of red blood cells.
J Biomech. 2022 May;137:111081. doi: 10.1016/j.jbiomech.2022.111081. Epub 2022 Apr 6.
4
Dynamics of Individual Red Blood Cells Under Shear Flow: A Way to Discriminate Deformability Alterations.
Front Physiol. 2022 Jan 5;12:775584. doi: 10.3389/fphys.2021.775584. eCollection 2021.
5
Internal Viscosity-Dependent Margination of Red Blood Cells in Microfluidic Channels.
J Biomech Eng. 2018 Jun 1;140(6). doi: 10.1115/1.4039897.
7
SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
Biomed Eng Online. 2016 Dec 28;15(Suppl 2):161. doi: 10.1186/s12938-016-0256-0.
8
Numerical simulation of rheology of red blood cell rouleaux in microchannels.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Apr;79(4 Pt 1):041916. doi: 10.1103/PhysRevE.79.041916. Epub 2009 Apr 17.
9
Tank-treading and tumbling frequencies of capsules and red blood cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046305. doi: 10.1103/PhysRevE.83.046305. Epub 2011 Apr 7.
10
Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel.
Micromachines (Basel). 2019 Mar 21;10(3):199. doi: 10.3390/mi10030199.

引用本文的文献

1
A mathematical model of fibrinogen-mediated erythrocyte-erythrocyte adhesion.
Commun Biol. 2023 Feb 17;6(1):192. doi: 10.1038/s42003-023-04560-4.
3
Microfluidic Obstacle Arrays Induce Large Reversible Shape Change in Red Blood Cells.
Micromachines (Basel). 2021 Jun 30;12(7):783. doi: 10.3390/mi12070783.
4
Going beyond 20 μm-sized channels for studying red blood cell phase separation in microfluidic bifurcations.
Biomicrofluidics. 2016 May 12;10(3):034103. doi: 10.1063/1.4948955. eCollection 2016 May.
5
Mechanical response of red blood cells entering a constriction.
Biomicrofluidics. 2014 Dec 11;8(6):064123. doi: 10.1063/1.4904058. eCollection 2014 Nov.

本文引用的文献

1
Orientation of red blood cells and rouleaux disaggregation in interference laser fields.
J Biol Phys. 2005 Jan;31(1):73-85. doi: 10.1007/s10867-005-6732-6.
2
Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel.
J Biomech. 2009 May 11;42(7):838-43. doi: 10.1016/j.jbiomech.2009.01.026. Epub 2009 Mar 6.
3
Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
J Biomech. 2007;40(9):2088-95. doi: 10.1016/j.jbiomech.2006.10.004. Epub 2006 Dec 22.
4
Theoretical model of reticulocyte to erythrocyte shape transformation.
J Theor Biol. 2006 Nov 7;243(1):24-38. doi: 10.1016/j.jtbi.2006.06.011. Epub 2006 Jun 20.
5
Effect of low power laser irradiation on disconnecting the membrane-attached hemoglobin from erythrocyte membrane.
J Photochem Photobiol B. 2006 May 1;83(2):146-50. doi: 10.1016/j.jphotobiol.2005.12.018. Epub 2006 Feb 14.
6
Use of Cell Transit Analyser pulse height to study the deformation of erythrocytes in microchannels.
Med Eng Phys. 2005 Mar;27(2):157-65. doi: 10.1016/j.medengphy.2004.09.015.
7
A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14618-22. doi: 10.1073/pnas.2433968100. Epub 2003 Nov 24.
8
Prototype of an in vitro model of the microcirculation.
Microvasc Res. 2003 Mar;65(2):132-6. doi: 10.1016/s0026-2862(02)00034-1.
9
An integrated nanoliter DNA analysis device.
Science. 1998 Oct 16;282(5388):484-7. doi: 10.1126/science.282.5388.484.
10
Cell distribution in capillary networks.
Microvasc Res. 1980 Jan;19(1):18-44. doi: 10.1016/0026-2862(80)90082-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验