Zoological Institute, Cologne Biocentre, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany.
Mol Ecol. 2012 Oct;21(19):4898-911. doi: 10.1111/j.1365-294X.2012.05753.x. Epub 2012 Sep 3.
Protease inhibitors of primary producers are a major food quality constraint for herbivores. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is mainly represented by Daphnia and cyanobacteria. Protease inhibitors have been found in many cyanobacterial blooms. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the daphnid's gut, that is, trypsins and chymotrypsins. In this study, we fed four different Daphnia magna genotypes with the trypsin-inhibitor-containing cyanobacterial strain Microcystis aeruginosa PCC 7806 Mut. Upon exposure to dietary trypsin inhibitors, all D. magna genotypes showed increased gene expression of digestive trypsins and chymotrypsins. Exposure to dietary trypsin inhibitors resulted in increased activity of chymotrypsins and reduced activity of trypsin. Strong intraspecific differences in tolerance of the four D. magna genotypes to the dietary trypsin inhibitors were found. The degree of tolerance depended on the D. magna genotype. The genotypes' tolerance was positively correlated with the residual trypsin activity and the different IC(50) values of the trypsins. On the genetic level, the different trypsin loci varied between the D. magna genotypes. The two tolerant Daphnia genotypes that both originate from the same lake, which frequently produces cyanobacterial blooms, clustered in a neighbour-joining phylogenetic tree based on the three trypsin loci. This suggests that the genetic variability of trypsin loci was an important cause for the observed intraspecific variability in tolerance to cyanobacterial trypsin inhibitors. Based on these findings, it is reasonable to assume that such genetic variability can also be found in natural populations and thus constitutes the basis for local adaptation of natural populations to dietary protease inhibitors.
初级生产者的蛋白酶抑制剂是食草动物的主要食物质量限制因素。在营养丰富的淡水生态系统中,初级生产者和食草动物之间的相互作用主要由枝角类和蓝藻代表。已经在许多蓝藻水华中共发现了蛋白酶抑制剂。这些抑制剂已被证明(无论是在体外还是在原位)可抑制枝角类肠道中最重要的一组消化蛋白酶,即胰蛋白酶和糜蛋白酶。在这项研究中,我们用含有蛋白酶抑制剂的蓝藻菌株微囊藻 PCC 7806 Mut 喂养了四种不同的大型溞 Magna 基因型。暴露于饮食中的蛋白酶抑制剂后,所有大型溞 Magna 基因型均显示出消化胰蛋白酶和糜蛋白酶的基因表达增加。暴露于饮食中的蛋白酶抑制剂会导致糜蛋白酶活性增加和胰蛋白酶活性降低。发现四种大型溞 Magna 基因型对饮食中的蛋白酶抑制剂的耐受能力存在强烈的种内差异。耐受性的程度取决于大型溞 Magna 基因型。基因型的耐受性与残留胰蛋白酶活性和不同的胰蛋白酶 IC(50)值呈正相关。在遗传水平上,不同的胰蛋白酶基因座在大型溞 Magna 基因型之间有所不同。两个耐受型大型溞 Magna 基因型均来自同一个经常产生蓝藻水华的湖泊,它们聚类在基于三个胰蛋白酶基因座的邻接聚类系统发育树中。这表明,胰蛋白酶基因座的遗传变异性是观察到的对蓝藻胰蛋白酶抑制剂的种内变异性的重要原因。基于这些发现,可以合理地假设,这种遗传变异性也可以在自然种群中找到,从而构成自然种群对饮食蛋白酶抑制剂的局部适应的基础。