Suppr超能文献

理解经典钙蛋白酶的底物特异性。

Understanding the substrate specificity of conventional calpains.

机构信息

Calpain Project, Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.

出版信息

Biol Chem. 2012 Sep;393(9):853-71. doi: 10.1515/hsz-2012-0143.

Abstract

Calpains are intracellular Ca(2+)-dependent Cys proteases that play important roles in a wide range of biological phenomena via the limited proteolysis of their substrates. Genetic defects in calpain genes cause lethality and/or functional deficits in many organisms, including humans. Despite their biological importance, the mechanisms underlying the action of calpains, particularly of their substrate specificities, remain largely unknown. Studies show that certain sequence preferences influence calpain substrate recognition, and some properties of amino acids have been related successfully to substrate specificity and to the calpains' 3D structure. The full spectrum of this substrate specificity, however, has not been clarified using standard sequence analysis algorithms, e.g., the position-specific scoring-matrix method. More advanced bioinformatics techniques were used recently to identify the substrate specificities of calpains and to develop a predictor for calpain cleavage sites, demonstrating the potential of combining empirical data acquisition and machine learning. This review discusses the calpains' substrate specificities, introducing the benefits of bioinformatics applications. In conclusion, machine learning has led to the development of useful predictors for calpain cleavage sites, although the accuracy of the predictions still needs improvement. Machine learning has also elucidated information about the properties of calpains' substrate specificities, including a preference for sequences over secondary structures and the existence of a substrate specificity difference between two similar conventional calpains, which has never been indicated biochemically.

摘要

钙蛋白酶是细胞内依赖 Ca(2+)的 Cys 蛋白酶,通过对其底物的有限水解,在广泛的生物学现象中发挥重要作用。钙蛋白酶基因的遗传缺陷导致许多生物体(包括人类)的致死性和/或功能缺陷。尽管它们具有重要的生物学意义,但钙蛋白酶的作用机制,特别是其底物特异性的机制,在很大程度上仍然未知。研究表明,某些序列偏好会影响钙蛋白酶底物的识别,并且一些氨基酸的性质已经成功地与底物特异性和钙蛋白酶的 3D 结构相关联。然而,使用标准序列分析算法(例如位置特异性评分矩阵方法)尚未阐明这种底物特异性的全貌。最近使用了更先进的生物信息学技术来识别钙蛋白酶的底物特异性,并开发了钙蛋白酶切割位点的预测器,证明了结合经验数据采集和机器学习的潜力。本文综述了钙蛋白酶的底物特异性,并介绍了生物信息学应用的优势。总之,机器学习已导致开发出有用的钙蛋白酶切割位点预测器,尽管预测的准确性仍有待提高。机器学习还阐明了钙蛋白酶底物特异性的性质信息,包括对序列而非二级结构的偏好,以及两种类似的传统钙蛋白酶之间存在的底物特异性差异,这在生化上从未被表明过。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验