Suppr超能文献

利用配备有复合抛物面聚光器(CPCs)的 2.5L 静态太阳能反应器加速针对微小隐孢子虫(Cryptosporidium parvum)的太阳能水消毒过程(SODIS)。

Speeding up the solar water disinfection process (SODIS) against Cryptosporidium parvum by using 2.5l static solar reactors fitted with compound parabolic concentrators (CPCs).

机构信息

Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Vida, Universidad de Santiago de Compostela, A Coruña, Spain.

出版信息

Acta Trop. 2012 Dec;124(3):235-42. doi: 10.1016/j.actatropica.2012.08.018. Epub 2012 Sep 1.

Abstract

Water samples of 0, 5, and 100 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight in 2.5l static borosilicate solar reactors fitted with two different compound parabolic concentrators (CPCs), CPC1 and CPC1.89, with concentration factors of the solar radiation of 1 and 1.89, respectively. The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. Thus, the initial global oocyst viability of the C. parvum isolate used was 95.3 ± 1.6%. Using the solar reactors fitted with CPC1, the global viability of oocysts after 12h of exposure was zero in the most turbid water samples (100 NTU) and almost zero in the other water samples (0.3 ± 0.0% for 0 NTU and 0.5 ± 0.2% for 5 NTU). Employing the solar reactors fitted with CPC1.89, after 10h exposure, the global oocyst viability was zero in the non-turbid water samples (0 NTU), and it was almost zero in the 5 NTU water samples after 8h of exposure (0.5 ± 0.5%). In the most turbid water samples (100 NTU), the global viability was 1.9 ± 0.6% after 10 and 12h of exposure. In conclusion, the use of these 2.5l static solar reactors fitted with CPCs significantly improved the efficacy of the SODIS technique as these systems shorten the exposure times to solar radiation, and also minimize the negative effects of turbidity. This technology therefore represents a good alternative method for improving the microbiological quality of household drinking water in developing countries.

摘要

将浓度为 0、5 和 100 浊度单位(NTU)的隐孢子虫卵囊水样本暴露于装有两种不同复合抛物面聚光器(CPC)的 2.5L 静态硼硅酸盐太阳能反应器中的自然阳光下,CPC1 和 CPC1.89,太阳辐射的浓缩系数分别为 1 和 1.89。通过评估荧光活染料碘化丙啶的包含/排除以及自发囊泡释放,计算出全球卵囊的总活力。因此,所使用的微小隐孢子虫分离株的初始总卵囊活力为 95.3±1.6%。使用装有 CPC1 的太阳能反应器,在最浑浊的水样(100NTU)中,暴露 12 小时后,全球卵囊活力几乎为零,而在其他水样中(0NTU 时为 0.3±0.0%,5NTU 时为 0.5±0.2%),全球卵囊活力几乎为零。采用装有 CPC1.89 的太阳能反应器,在非浑浊水样(0NTU)中,暴露 10 小时后,全球卵囊活力为零,而在 5NTU 水样中,暴露 8 小时后,全球卵囊活力几乎为零(0.5±0.5%)。在最浑浊的水样(100NTU)中,暴露 10 和 12 小时后,全球活力分别为 1.9±0.6%。总之,使用这些装有 CPC 的 2.5L 静态太阳能反应器显著提高了 SODIS 技术的效果,因为这些系统缩短了暴露于太阳辐射的时间,并且还最小化了浊度的负面影响。因此,该技术代表了改善发展中国家家庭饮用水微生物质量的一种良好替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验