Departament de Química Biològica i Modelització Molecular (IQAC-CSIC), c/Jordi Girona 18, 08034 Barcelona, Spain.
Chemistry. 2012 Oct 15;18(42):13435-45. doi: 10.1002/chem.201201991. Epub 2012 Sep 3.
The role of the HO(4)(-) anion in atmospheric chemistry and biology is a matter of debate, because it can be formed from, or be in equilibrium with, key species such as O(3) + HO(-) or HO(2) + O(2) (-). The determination of the stability of HO(4)(-) in water therefore has the greatest relevance for better understanding the mechanism associated with oxidative cascades in aqueous solution. However, experiments are difficult to perform because of the short-lived character of this species, and in this work we have employed DFT, CCSD(T) complete basis set (CBS), MRCI/aug-cc-pVTZ, and combined quantum mechanics/molecular mechanics (QM/MM) calculations to investigate this topic. We show that the HO(4)(-) anion has a planar structure in the gas phase, with a very large HOO-OO bond length (1.823 Å). In contrast, HO(4)(-) adopts a nonplanar configuration in aqueous solution, with huge geometrical changes (up to 0.232 Å for the HOO-OO bond length) with a very small energy cost. The formation of the HO(4)(-) anion is predicted to be endergonic by 5.53±1.44 and 2.14±0.37 kcal mol(-1) with respect to the O(3) + HO(-) and HO(2) + O(2)(-) channels, respectively. Moreover, the combination of theoretical calculations with experimental free energies of solvation has allowed us to obtain accurate free energies for the main reactions involved in the aqueous decomposition of ozone. Thus, the oxygen transfer reaction (O(3) + OH(-) → HO(2) + O(2)(-)) is endergonic by 3.39±1.80 kcal mol(-1), the electron transfer process (O(3) + O(2)(-) → O(3)(-) + O(2)) is exergonic by 31.53±1.05 kcal mol(-1), supporting the chain-carrier role of the superoxide ion, and the reaction O(3) + HO(2)(-) → OH + O(2)(-) + O(2) is exergonic by 12.78±1.15 kcal mol(-1), which is consistent with the fact that the addition of small amounts of HO(2)(-) (through H(2)O(2)) accelerates ozone decomposition in water. The combination of our results with previously reported thermokinetic data provides some insights into the potentially important role of the HO(4)(-) anion as a key reaction intermediate.
HO(4)(-)阴离子在大气化学和生物学中的作用是一个有争议的问题,因为它可以由 O(3) + HO(-) 或 HO(2) + O(2)(-) 等关键物种形成,或者与之处于平衡状态。因此,确定 HO(4)(-)在水中的稳定性对于更好地理解与水溶液中氧化级联相关的机制至关重要。然而,由于该物种的寿命短,实验很难进行,在这项工作中,我们使用了 DFT、CCSD(T)完全基组(CBS)、MRCI/aug-cc-pVTZ 和组合量子力学/分子力学(QM/MM)计算来研究这个课题。我们表明,HO(4)(-)阴离子在气相中具有平面结构,HOO-OO 键长非常大(1.823 Å)。相比之下,HO(4)(-)在水溶液中采用非平面构型,具有巨大的几何变化(HOO-OO 键长可达 0.232 Å),但能量成本很小。相对于 O(3) + HO(-) 和 HO(2) + O(2)(-) 通道,HO(4)(-)阴离子的形成分别预测为吸热 5.53±1.44 和 2.14±0.37 kcal mol(-1)。此外,将理论计算与实验溶剂化自由能相结合,使我们能够获得臭氧水溶液分解中主要反应的准确自由能。因此,氧转移反应(O(3) + OH(-) → HO(2) + O(2)(-))为吸热 3.39±1.80 kcal mol(-1),电子转移过程(O(3) + O(2)(-) → O(3)(-) + O(2))为放热 31.53±1.05 kcal mol(-1),支持超氧离子的链载体作用,而反应 O(3) + HO(2)(-) → OH + O(2)(-) + O(2) 为放热 12.78±1.15 kcal mol(-1),这与少量 HO(2)(-)(通过 H(2)O(2))加速水中臭氧分解的事实一致。将我们的结果与以前报道的热动力学数据相结合,为 HO(4)(-)阴离子作为关键反应中间体的潜在重要作用提供了一些见解。