Suppr超能文献

使用多个 PAI 量表升高来检测装病:一个新指标。

The detection of feigning using multiple PAI scale elevations: a new index.

机构信息

Texas Tech University Health Sciences Center, Lubbock, TX 79404, USA.

出版信息

Assessment. 2013 Aug;20(4):437-47. doi: 10.1177/1073191112458146. Epub 2012 Sep 3.

Abstract

Archival data were collected from 98 male inmates at a psychiatric inpatient unit to examine the utility of the Multiscale Feigning Index (MFI) as a proposed feigning index for the Personality Assessment Inventory (PAI). MFI was compared with existing PAI feigning indices, Malingering (MAL), Negative Impression Management (NIM), and Rogers Discriminant Function (RDF), using performance on the Structured Interview of Reported Symptoms (SIRS) as the feigning criterion. Regression analyses revealed that MFI was a stronger predictor of SIRS outcome than NIM, MAL, and RDF. In addition, NIM, MAL, and RDF did not add substantial incremental validity to MFI in predicting SIRS outcome. Receiver operating characteristic analyses revealed sensitivity of 68.89% and specificity of 94.34% at an MFI cutoff of more than 76, which compared favorably with the utility of NIM, MAL, and RDF.

摘要

从一家精神病住院病房的 98 名男性囚犯那里收集了档案数据,以检验多尺度伪装指数(MFI)作为人格评估量表(PAI)的伪装指标的效用。使用报告症状的结构化访谈(SIRS)的表现作为伪装标准,将 MFI 与现有的 PAI 伪装指标(MAL)、消极印象管理(NIM)和罗杰斯判别函数(RDF)进行了比较。回归分析显示,MFI 是 SIRS 结果的更强预测因子,优于 NIM、MAL 和 RDF。此外,NIM、MAL 和 RDF 在预测 SIRS 结果方面并没有为 MFI 增加实质性的增量有效性。受试者工作特征分析显示,MFI 截距大于 76 时的灵敏度为 68.89%,特异性为 94.34%,这与 NIM、MAL 和 RDF 的效用相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验