Suppr超能文献

利用定向进化技术鉴定炭疽保护性抗原的新型显性负突变体。

Identification of new dominant-negative mutants of anthrax protective antigen using directed evolution.

机构信息

College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.

出版信息

Appl Biochem Biotechnol. 2012 Nov;168(5):1302-10. doi: 10.1007/s12010-012-9858-6. Epub 2012 Sep 5.

Abstract

The anthrax toxin is composed of three proteins: protective antigen (PA), lethal factor (LF), and edema toxin (EF). The PA moiety carries EF and LF into the cytosol of mammalian cells via a mechanism that depends on the oligomerization of PA and transmembrane pore formation by the PA oligomer. Certain mutants of PA, termed dominant-negative (DN) mutants, can co-oligomerize with wild-type PA and disrupt the translocation ability of the pore. Here, we constructed a PA mutant library by introducing random mutations into domain II of PA and screened three new DN mutants of PA: V377E, T380S, and I432C. All the mutants inhibited the anthrax toxin action against sensitive cells. V377E had the strongest inhibitory effect and was further confirmed to be able to protect mice against a challenge with anthrax lethal toxin. Furthermore, we functionally characterized these mutants. The result showed that these mutations did not impair proteolytic activation or oligomer formation of PA, but impeded the prepore-pore conversion of the oligomer. These DN mutants of PA identified in our study may provide valuable information for elucidating the structure-function relationship of PA and for designing therapeutics for anthrax treatment.

摘要

炭疽毒素由三种蛋白质组成

保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA 部分通过一种依赖于 PA 寡聚化和 PA 寡聚体形成跨膜孔的机制,将 EF 和 LF 携带进入哺乳动物细胞的细胞质中。某些 PA 突变体,称为显性负(DN)突变体,可以与野生型 PA 共同寡聚化并破坏孔的易位能力。在这里,我们通过在 PA 的结构域 II 中引入随机突变构建了一个 PA 突变体文库,并筛选出三种新的 PA DN 突变体:V377E、T380S 和 I432C。所有突变体均抑制炭疽毒素对敏感细胞的作用。V377E 具有最强的抑制作用,并进一步证实能够保护小鼠免受炭疽致死毒素的攻击。此外,我们对这些突变体进行了功能表征。结果表明,这些突变并未损害 PA 的蛋白水解激活或寡聚化形成,但阻碍了寡聚体的前孔-孔转化。我们在研究中鉴定的这些 PA DN 突变体可能为阐明 PA 的结构-功能关系以及设计炭疽治疗的治疗方法提供有价值的信息。

相似文献

1
Identification of new dominant-negative mutants of anthrax protective antigen using directed evolution.
Appl Biochem Biotechnol. 2012 Nov;168(5):1302-10. doi: 10.1007/s12010-012-9858-6. Epub 2012 Sep 5.
2
Catalytically inactive anthrax toxin(s) are potential prophylactic agents.
Vaccine. 2007 Dec 5;25(50):8410-9. doi: 10.1016/j.vaccine.2007.09.063. Epub 2007 Oct 16.
3
Soluble expression and purification of the anthrax protective antigen in E. coli and identification of a novel dominant-negative mutant N435C.
Appl Microbiol Biotechnol. 2010 Jun;87(2):609-16. doi: 10.1007/s00253-010-2495-5. Epub 2010 Mar 6.
4
Mapping dominant-negative mutations of anthrax protective antigen by scanning mutagenesis.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13803-8. doi: 10.1073/pnas.2436299100. Epub 2003 Nov 17.
6
The 2beta2-2beta3 loop of anthrax protective antigen contains a dominant neutralizing epitope.
Biochem Biophys Res Commun. 2006 Mar 24;341(4):1164-71. doi: 10.1016/j.bbrc.2006.01.080. Epub 2006 Jan 26.
7
Role of toxin functional domains in anthrax pathogenesis.
Infect Immun. 2000 Apr;68(4):1781-6. doi: 10.1128/IAI.68.4.1781-1786.2000.
8
Characterization of membrane translocation by anthrax protective antigen.
Biochemistry. 1998 Nov 10;37(45):15737-46. doi: 10.1021/bi981436i.
10
Activity of the Bacillus anthracis 20 kDa protective antigen component.
BMC Infect Dis. 2008 Sep 22;8:124. doi: 10.1186/1471-2334-8-124.

引用本文的文献

1
An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis.
Expert Opin Investig Drugs. 2015;24(7):851-65. doi: 10.1517/13543784.2015.1041587. Epub 2015 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验