Research School of Earth Sciences, The Australian National University, Canberra 0200, Australia.
Nat Commun. 2012;3:1048. doi: 10.1038/ncomms2051.
Understanding lithospheric plate motions is of paramount importance to geodynamicists. Much effort is going into kinematic reconstructions featuring progressively finer temporal resolution. However, the challenge of precisely identifying ocean-floor magnetic lineations, and uncertainties in geomagnetic reversal timescales result in substantial finite-rotations noise. Unless some type of temporal smoothing is applied, the scenario arising at the native temporal resolution is puzzling, as plate motions vary erratically and significantly over short periods (<1 Myr). This undermines our ability to make geodynamic inferences, as the rates at which forces need to be built upon plates to explain these kinematics far exceed the most optimistic estimates. Here we show that the largest kinematic changes reconstructed across the Atlantic, Indian and South Pacific ridges arise from data noise. We overcome this limitation using a trans-dimensional hierarchical Bayesian framework. We find that plate-motion changes occur on timescales no shorter than a few million years, yielding simpler kinematic patterns and more plausible dynamics.
了解岩石圈板块运动对于地球动力学研究人员至关重要。目前,研究人员正致力于进行更精细时间分辨率的运动学重建。然而,精确识别海底磁条带以及地磁场反转时间尺度的不确定性导致了大量的有限旋转噪声。除非应用某种时间平滑方法,否则在原始时间分辨率下出现的情况会令人困惑,因为板块运动在短时间内(<1 百万年)会不规则且显著地变化。这削弱了我们进行地球动力学推断的能力,因为为了解释这些运动学,需要在板块上施加的力的速率远远超过了最乐观的估计。在这里,我们表明,在大西洋、印度洋和南太平洋脊中重建的最大运动学变化来自于数据噪声。我们使用多维分层贝叶斯框架克服了这一限制。我们发现板块运动变化发生在不少于几百万年的时间尺度上,产生了更简单的运动学模式和更合理的动力学。