Suppr超能文献

基于改进的自组织映射和速度合成方法的三维水下作业空间中多 AUV 系统的动态任务分配与路径规划。

Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace.

出版信息

IEEE Trans Cybern. 2013 Apr;43(2):504-14. doi: 10.1109/TSMCB.2012.2210212. Epub 2013 Mar 7.

Abstract

For a 3-D underwater workspace with a variable ocean current, an integrated multiple autonomous underwater vehicle (AUV) dynamic task assignment and path planning algorithm is proposed by combing the improved self-organizing map (SOM) neural network and a novel velocity synthesis approach. The goal is to control a team of AUVs to reach all appointed target locations for only one time on the premise of workload balance and energy sufficiency while guaranteeing the least total and individual consumption in the presence of the variable ocean current. First, the SOM neuron network is developed to assign a team of AUVs to achieve multiple target locations in 3-D ocean environment. The working process involves special definition of the initial neural weights of the SOM network, the rule to select the winner, the computation of the neighborhood function, and the method to update weights. Then, the velocity synthesis approach is applied to plan the shortest path for each AUV to visit the corresponding target in a dynamic environment subject to the ocean current being variable and targets being movable. Lastly, to demonstrate the effectiveness of the proposed approach, simulation results are given in this paper.

摘要

针对具有可变海流的三维水下工作空间,提出了一种结合改进的自组织映射(SOM)神经网络和新颖的速度综合方法的集成多自主水下航行器(AUV)动态任务分配和路径规划算法。其目标是在保证工作负载平衡和能量充足的前提下,控制一组 AUV 仅一次到达所有指定的目标位置,同时在存在可变海流的情况下保证总消耗和个体消耗最小。首先,开发 SOM 神经元网络来分配一组 AUV 以在三维海洋环境中实现多个目标位置。工作过程包括 SOM 网络初始神经元权重的特殊定义、选择获胜者的规则、邻域函数的计算以及权重更新的方法。然后,应用速度综合方法来规划每个 AUV 在动态环境中的最短路径,以访问相应的目标,其中海流是可变的,目标是可移动的。最后,为了验证所提出方法的有效性,本文给出了仿真结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验