Suppr超能文献

基于三维水下环境生物启发神经动力学模型的多自主水下航行器目标搜索。

Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.

出版信息

IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2364-2374. doi: 10.1109/TNNLS.2015.2482501. Epub 2015 Oct 16.

Abstract

Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.

摘要

三维水下环境中的目标搜索是多自主水下机器人(multi-AUV)探索中的一个挑战。本文专注于一种在具有障碍物的三维水下环境中进行多 AUV 目标搜索的有效策略。首先,应用证据理论中的 Dempster-Shafer 理论从声纳数据中提取环境信息,以构建水下环境的栅格地图。其次,基于该栅格地图构建了一种拓扑组织的仿生神经动力学模型,以表示动态环境。目标通过模型的动态神经活动景观全局吸引 AUV,而障碍物则通过局部推动 AUV 以避免碰撞。最后,AUV 通过最陡梯度下降规则自主规划搜索目标的路径。所提出的算法能够处理各种情况,例如静态目标搜索、动态目标搜索以及在具有障碍物的三维水下环境中一个或多个 AUV 出现故障的情况。仿真结果表明,与其他算法相比,所提出的算法能够更有效地引导多 AUV 完成多个目标的搜索任务,并且具有更好的适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验