BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland.
Infect Immun. 2012 Nov;80(11):3985-92. doi: 10.1128/IAI.00554-12. Epub 2012 Sep 4.
The transcription factor hypoxia-inducible factor 1 (HIF-1) has recently emerged to be a crucial regulator of the immune response following pathogen perception, including the response to the important human pathogen Pseudomonas aeruginosa. However, as mechanisms involved in HIF-1 activation by bacterial pathogens are not fully characterized, understanding how bacteria and bacterial compounds impact on HIF-1α stabilization remains a major challenge. In this context, we have focused on the effect of secreted factors of P. aeruginosa on HIF-1 regulation. Surprisingly, we found that P. aeruginosa cell-free supernatant significantly repressed HIF-1α protein levels. Further characterization revealed that HIF-1α downregulation was dependent on a subset of key secreted factors involved in P. aeruginosa pathogenesis, the 2-alkyl-4-quinolone (AQ) quorum sensing (QS) signaling molecules, and in particular the pseudomonas quinolone signal (PQS). Under hypoxic conditions, the AQ-dependent downregulation of HIF-1α was linked to the suppressed induction of the important HIF-1 target gene hexokinase II. Furthermore, we demonstrated that AQ molecules directly target HIF-1α protein degradation through the 26S-proteasome proteolytic pathway but independently of the prolyl hydroxylase domain (PHD). In conclusion, this is the first report showing that bacterial molecules can repress HIF-1α protein levels. Manipulation of HIF-1 signaling by P. aeruginosa AQs could have major consequences for the host response to infection and may facilitate the infective properties of this pathogen.
转录因子缺氧诱导因子 1(HIF-1)最近被发现是病原体感知后免疫反应的关键调节剂,包括对重要人类病原体铜绿假单胞菌的反应。然而,由于细菌病原体激活 HIF-1 的机制尚未完全阐明,因此了解细菌和细菌化合物如何影响 HIF-1α 的稳定仍然是一个主要挑战。在这种情况下,我们专注于铜绿假单胞菌分泌因子对 HIF-1 调节的影响。令人惊讶的是,我们发现铜绿假单胞菌无细胞上清液显著抑制了 HIF-1α 蛋白水平。进一步的特征分析表明,HIF-1α 的下调依赖于一组关键的分泌因子,这些因子参与了铜绿假单胞菌的发病机制,即 2-烷基-4-喹诺酮(AQ)群体感应(QS)信号分子,特别是假单胞菌喹诺酮信号(PQS)。在缺氧条件下,AQ 依赖性的 HIF-1α 下调与重要的 HIF-1 靶基因己糖激酶 II 的诱导抑制有关。此外,我们证明 AQ 分子通过 26S 蛋白酶体蛋白水解途径直接靶向 HIF-1α 蛋白降解,而不依赖于脯氨酰羟化酶结构域(PHD)。总之,这是第一个报道表明细菌分子可以抑制 HIF-1α 蛋白水平的报告。铜绿假单胞菌 AQs 对 HIF-1 信号的操纵可能对宿主对感染的反应产生重大影响,并可能促进该病原体的感染特性。