State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.
Environ Sci Technol. 2012 Oct 2;46(19):10624-31. doi: 10.1021/es3025808. Epub 2012 Sep 14.
The increasing usage of organic nitrogen-rich wastewater- or algal-impacted waters, and chloramines for secondary disinfection, raises concerns regarding the formation of haloacetonitriles, haloacetamides and other nitrogenous disinfection byproducts (N-DBPs). Previous research obtained contradictory results regarding the relative importance of chlorination or chloramination for promoting these byproducts, but applied chlorine and chloramines at different doses and exposure periods. Additionally, mechanistic work, mostly using model precursors, suggested that haloacetonitrile and haloacetamide formation should be correlated because hydrolysis of haloacetonitriles forms haloacetamides. In this work, the formation of dichloroacetonitrile (DCAN) and dichloroacetamide (DCAcAm) were compared across a range of chlorine and chloramine exposures for drinking waters, wastewater effluents, algal extracellular polymeric substances (EPS), NOM isolates and model precursors. While chlorination favored formation of DCAN over DCAcAm, chloramination nearly always formed more DCAcAm than DCAN, suggesting the existence of haloacetamide formation pathways that are independent of the hydrolysis of haloacetonitriles. Experiments with asparagine as a model precursor also suggested DCAcAm formation without a DCAN intermediate. Application of (15)N-labeled monochloramine indicated initial rapid formation of both DCAN and DCAcAm by pathways where the nitrogen originated from organic nitrogen precursors. However, slower formation occurred by pathways involving chloramine incorporation into organic precursors. While wastewater effluents and algal EPS tended to be more potent precursors for DCAN during chlorination, humic materials were more potent precursors for DCAcAm during chlorination and for both DCAN and DCAcAm during chloramination. These results suggest that, rather than considering haloacetamides as haloacetonitrile hydrolysis products, they should be treated as a separate N-DBP class associated with chloramination. While use of impaired waters may promote DCAN formation during chlorination, use of chloramines may promote haloacetamide formation for a wider array of waters.
有机富氮废水或受藻类影响的水以及氯胺被越来越多地用于二级消毒,这引发了人们对卤乙腈、卤乙酰胺和其他含氮消毒副产物(N-DBPs)形成的关注。先前的研究对于氯化或氯化氨促进这些副产物形成的相对重要性得出了相互矛盾的结果,但应用的氯和氯胺的剂量和暴露时间不同。此外,大部分使用模型前体的机理研究表明,卤乙腈和卤乙酰胺的形成应该相关,因为卤乙腈的水解形成卤乙酰胺。在这项工作中,比较了一系列氯和氯胺暴露条件下饮用水、废水、藻类胞外聚合物(EPS)、NOM 分离物和模型前体中二氯乙腈(DCAN)和二氯乙酰胺(DCAcAm)的形成情况。虽然氯化有利于 DCAN 的形成而不利于 DCAcAm 的形成,但氯化氨几乎总是形成更多的 DCAcAm 而不是 DCAN,这表明存在独立于卤乙腈水解的卤乙酰胺形成途径。使用天冬酰胺作为模型前体的实验也表明无需 DCAN 中间体即可形成 DCAcAm。(15)N 标记的一氯胺的应用表明,两种 DCAN 和 DCAcAm 都通过源自有机氮前体的氮的途径快速形成。然而,较慢的形成是通过涉及氯胺掺入有机前体的途径发生的。虽然在氯化过程中废水和藻类 EPS 往往是 DCAN 的更有效前体,但腐殖质在氯化过程中是 DCAcAm 的更有效前体,在氯化和氯化氨过程中都是 DCAN 和 DCAcAm 的更有效前体。这些结果表明,不应将卤乙酰胺视为卤乙腈水解产物,而应将其视为与氯化氨有关的单独 N-DBP 类别。虽然使用受损水可能会促进氯化过程中 DCAN 的形成,但使用氯胺可能会促进更广泛的水形成卤乙酰胺。