Suppr超能文献

推算的罕见变异的全基因组关联分析:应用于七种常见复杂疾病

Genome-wide association analysis of imputed rare variants: application to seven common complex diseases.

作者信息

Mägi Reedik, Asimit Jennifer L, Day-Williams Aaron G, Zeggini Eleftheria, Morris Andrew P

机构信息

Estonian Genome Centre, University of Tartu, Tartu, Estonia.

出版信息

Genet Epidemiol. 2012 Dec;36(8):785-96. doi: 10.1002/gepi.21675. Epub 2012 Sep 5.

Abstract

Genome-wide association studies have been successful in identifying loci contributing effects to a range of complex human traits. The majority of reproducible associations within these loci are with common variants, each of modest effect, which together explain only a small proportion of heritability. It has been suggested that much of the unexplained genetic component of complex traits can thus be attributed to rare variation. However, genome-wide association study genotyping chips have been designed primarily to capture common variation, and thus are underpowered to detect the effects of rare variants. Nevertheless, we demonstrate here, by simulation, that imputation from an existing scaffold of genome-wide genotype data up to high-density reference panels has the potential to identify rare variant associations with complex traits, without the need for costly re-sequencing experiments. By application of this approach to genome-wide association studies of seven common complex diseases, imputed up to publicly available reference panels, we identify genome-wide significant evidence of rare variant association in PRDM10 with coronary artery disease and multiple genes in the major histocompatibility complex (MHC) with type 1 diabetes. The results of our analyses highlight that genome-wide association studies have the potential to offer an exciting opportunity for gene discovery through association with rare variants, conceivably leading to substantial advancements in our understanding of the genetic architecture underlying complex human traits.

摘要

全基因组关联研究已成功识别出对一系列复杂人类性状有影响的基因座。这些基因座内大多数可重复的关联是与常见变异相关,每个变异的效应都较小,它们共同仅解释了遗传力的一小部分。有人提出,复杂性状中许多无法解释的遗传成分因此可归因于罕见变异。然而,全基因组关联研究基因分型芯片主要设计用于捕获常见变异,因此检测罕见变异效应的能力不足。尽管如此,我们在此通过模拟证明,从现有的全基因组基因型数据支架推算到高密度参考面板,有潜力识别与复杂性状相关的罕见变异关联,而无需进行昂贵的重测序实验。通过将这种方法应用于七种常见复杂疾病的全基因组关联研究,并推算到公开可用的参考面板,我们在PRDM10基因中发现了与冠状动脉疾病相关的罕见变异关联的全基因组显著证据,以及在主要组织相容性复合体(MHC)中的多个基因与1型糖尿病相关的证据。我们的分析结果强调,全基因组关联研究有潜力通过与罕见变异的关联提供一个令人兴奋的基因发现机会,这可能会极大地推进我们对复杂人类性状潜在遗传结构的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab3/3569874/85511ca453eb/gepi0036-0785-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验