Suppr超能文献

为了鉴定罕见变异的关联,只需 WHaIT:加权单体型和基于推断的检验。

To identify associations with rare variants, just WHaIT: Weighted haplotype and imputation-based tests.

机构信息

Department of Genetics, University of North Carolina at Chapel Hill, 27599, USA.

出版信息

Am J Hum Genet. 2010 Nov 12;87(5):728-35. doi: 10.1016/j.ajhg.2010.10.014. Epub 2010 Nov 4.

Abstract

Empirical evidences suggest that both common and rare variants contribute to complex disease etiology. Although the effects of common variants have been thoroughly assessed in recent genome-wide association studies (GWAS), our knowledge of the impact of rare variants on complex diseases remains limited. A number of methods have been proposed to test for rare variant association in sequencing-based studies, a study design that is becoming popular but is still not economically feasible. On the contrary, few (if any) methods exist to detect rare variants in GWAS data, the data we have collected on thousands of individuals. Here we propose two methods, a weighted haplotype-based approach and an imputation-based approach, to test for the effect of rare variants with GWAS data. Both methods can incorporate external sequencing data when available. We evaluated our methods and compared them with methods proposed in the sequencing setting through extensive simulations. Our methods clearly show enhanced statistical power over existing methods for a wide range of population-attributable risk, percentage of disease-contributing rare variants, and proportion of rare alleles working in different directions. We also applied our methods to the IFIH1 region for the type 1 diabetes GWAS data collected by the Wellcome Trust Case-Control Consortium. Our methods yield p values in the order of 10⁻³, whereas the most significant p value from the existing methods is greater than 0.17. We thus demonstrate that the evaluation of rare variants with GWAS data is possible, particularly when public sequencing data are incorporated.

摘要

实证证据表明,常见变异和罕见变异都对复杂疾病的病因有影响。尽管最近的全基因组关联研究(GWAS)已经彻底评估了常见变异的影响,但我们对罕见变异对复杂疾病的影响的了解仍然有限。已经提出了许多方法来测试测序研究中的罕见变异关联,这是一种越来越流行的研究设计,但仍然不具有经济性。相反,在 GWAS 数据中检测罕见变异的方法(如果有的话)很少,GWAS 数据是我们在数千个人身上收集的数据。在这里,我们提出了两种方法,一种基于加权单倍型的方法和一种基于 imputation 的方法,用于测试 GWAS 数据中罕见变异的效应。这两种方法都可以在有外部测序数据时使用。我们评估了我们的方法,并通过广泛的模拟与测序环境中提出的方法进行了比较。我们的方法在广泛的人群归因风险、导致疾病的罕见变异百分比和不同方向工作的罕见等位基因比例下,明显显示出比现有方法更高的统计功效。我们还将我们的方法应用于由 Wellcome Trust 病例对照联盟收集的 1 型糖尿病 GWAS 数据的 IFIH1 区域。我们的方法得出的 p 值在 10⁻³的数量级,而现有方法中最显著的 p 值大于 0.17。因此,我们证明了使用 GWAS 数据评估罕见变异是可能的,特别是当整合公共测序数据时。

相似文献

8
Rare variant association test with multiple phenotypes.针对多种表型的罕见变异关联测试。
Genet Epidemiol. 2017 Apr;41(3):198-209. doi: 10.1002/gepi.22021. Epub 2016 Dec 31.

引用本文的文献

本文引用的文献

2
Hints of hidden heritability in GWAS.GWAS 中隐藏遗传力的迹象。
Nat Genet. 2010 Jul;42(7):558-60. doi: 10.1038/ng0710-558.
4
Pooled association tests for rare variants in exon-resequencing studies.外显子重测序研究中罕见变异的合并关联分析。
Am J Hum Genet. 2010 Jun 11;86(6):832-8. doi: 10.1016/j.ajhg.2010.04.005. Epub 2010 May 13.
10
Genotype imputation.基因型推算
Annu Rev Genomics Hum Genet. 2009;10:387-406. doi: 10.1146/annurev.genom.9.081307.164242.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验