Suppr超能文献

Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage.

作者信息

Sutherland A E, Speed T P, Calarco P G

机构信息

Department of Anatomy, University of California, San Francisco 94143.

出版信息

Dev Biol. 1990 Jan;137(1):13-25. doi: 10.1016/0012-1606(90)90003-2.

Abstract

Two populations of blastomeres become positionally distinct during fourth cleavage in the mouse embryo; the inner cells become enclosed within the embryo and the outer cells form the enclosing layer. The segregation of these two cell populations is important for later development, because it represents the initial step in the divergence of placental and fetal lineages. The mechanism by which the inner cells become allocated has been thought to involve the oriented division of polarized 8-cell blastomeres, but this has never been examined in the intact embryo. By using the technique of time-lapse cinemicrography, we have been able for the first time to directly examine the division planes of 8-cell blastomeres during fourth cleavage, and find that there are three, rather than two, major division plane orientations; anticlinal (perpendicular to the outer surface of the blastomere), periclinal (parallel to the outer surface of the blastomere), and oblique (at an angle between the other two). The observed frequencies of each type of division plane orientation provide evidence that the inner cells of the morula must derive from oriented division of 8-cell blastomeres, in accordance with the polarization hypothesis. Analysis of fourth cleavage division plane orientation with respect to either lineage or division order reveals that it is not associated with lineage from either the 2- or the 4-cell stage, but has a slight statistical association with fourth cleavage division order. The lack of association between division plane orientation and lineage supports the prediction that packing patterns and intercellular interactions within the 8-cell embryo during compaction play a role in determining fourth cleavage division plane orientation and thus, the positional fate of the daughter 16-cell blastomeres.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验