Suppr超能文献

一种用于在真实机器人执行避障任务中的生物启发运动控制器。

A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots.

机构信息

Center for Neural and Emergent Systems, Department of Information and Systems Sciences, HRL Laboratories LLC, Malibu, CA 90265, United States.

出版信息

Neural Netw. 2012 Nov;35:54-69. doi: 10.1016/j.neunet.2012.07.010. Epub 2012 Aug 17.

Abstract

This paper describes a redundant robot arm that is capable of learning to reach for targets in space in a self-organized fashion while avoiding obstacles. Self-generated movement commands that activate correlated visual, spatial and motor information are used to learn forward and inverse kinematic control models while moving in obstacle-free space using the Direction-to-Rotation Transform (DIRECT). Unlike prior DIRECT models, the learning process in this work was realized using an online Fuzzy ARTMAP learning algorithm. The DIRECT-based kinematic controller is fault tolerant and can handle a wide range of perturbations such as joint locking and the use of tools despite not having experienced them during learning. The DIRECT model was extended based on a novel reactive obstacle avoidance direction (DIRECT-ROAD) model to enable redundant robots to avoid obstacles in environments with simple obstacle configurations. However, certain configurations of obstacles in the environment prevented the robot from reaching the target with purely reactive obstacle avoidance. To address this complexity, a self-organized process of mental rehearsals of movements was modeled, inspired by human and animal experiments on reaching, to generate plans for movement execution using DIRECT-ROAD in complex environments. These mental rehearsals or plans are self-generated by using the Fuzzy ARTMAP algorithm to retrieve multiple solutions for reaching each target while accounting for all the obstacles in its environment. The key aspects of the proposed novel controller were illustrated first using simple examples. Experiments were then performed on real robot platforms to demonstrate successful obstacle avoidance during reaching tasks in real-world environments.

摘要

本文描述了一种冗余机械臂,它能够以自组织的方式学习在空间中自主到达目标,同时避开障碍物。自主生成的运动命令激活相关的视觉、空间和运动信息,用于在无障碍物的空间中使用方向到旋转变换 (DIRECT) 学习正向和逆向运动学控制模型。与之前的 DIRECT 模型不同,这个工作中的学习过程是使用在线模糊 ARTMAP 学习算法实现的。基于 DIRECT 的运动控制器具有容错能力,可以处理各种干扰,例如关节锁定和使用工具,尽管在学习过程中没有经历过这些干扰。基于 DIRECT 的运动控制器是具有容错能力的,可以处理各种干扰,例如关节锁定和使用工具,尽管在学习过程中没有经历过这些干扰。基于 DIRECT 的运动控制器是具有容错能力的,可以处理各种干扰,例如关节锁定和使用工具,尽管在学习过程中没有经历过这些干扰。基于 DIRECT 的运动控制器是具有容错能力的,可以处理各种干扰,例如关节锁定和使用工具,尽管在学习过程中没有经历过这些干扰。

基于 DIRECT 的运动控制器具有容错能力,可以处理各种干扰,例如关节锁定和使用工具,尽管在学习过程中没有经历过这些干扰。

DIRECT 模型基于一种新的反应式障碍物回避方向 (DIRECT-ROAD) 模型进行扩展,使冗余机器人能够在障碍物配置简单的环境中避开障碍物。然而,环境中障碍物的某些配置使得机器人无法仅通过反应式障碍物回避来达到目标。为了解决这个复杂性,模仿人类和动物在达到目标时的实验,模拟了一种自主的运动心理演练过程,使用 DIRECT-ROAD 在复杂环境中生成运动执行计划。这些心理演练或计划是通过使用模糊 ARTMAP 算法自主生成的,该算法用于在考虑环境中所有障碍物的情况下,为到达每个目标检索多个解决方案。提出的新型控制器的关键方面首先使用简单的示例进行说明。然后在真实机器人平台上进行实验,以证明在现实环境中的到达任务中成功避免障碍物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验