Suppr超能文献

密度泛函研究水煤气变换反应在 M3O(3x)/Cu(111)上的作用。

Density functional study of water-gas shift reaction on M3O(3x)/Cu(111).

机构信息

Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, USA.

出版信息

Phys Chem Chem Phys. 2012 Dec 28;14(48):16626-32. doi: 10.1039/c2cp42091k. Epub 2012 Sep 7.

Abstract

Density functional theory (DFT) was employed to study the water dissociation and water-gas shift (WGS) reaction on a series of inverse model catalysts, M(3)O(3x)/Cu(111) (M = Mg, Ti, Zr, Mo, W; x = 1, 2, 3). It has been found that the WGS reaction on Cu can be facilitated by introducing various oxides to lower the barrier of water dissociation. Accordingly, the calculated reaction energy for water dissociation was used as a scaling descriptor to screen the WGS activity of oxide-Cu model catalysts. Our calculations show that the activity towards water dissociation decreases in a sequence: Mg(3)O(3)/Cu(111) > Zr(3)O(6)/Cu(111) > Ti(3)O(6)/Cu(111) > W(3)O(9)/Cu(111), Mo(3)O(9)/Cu(111). It seems that Mg(3)O(3)/Cu(111) is the best WGS catalyst among the systems studied here, being able to dissociate water with no barrier. During the process, both Cu and oxides participate in the reaction directly. The strong M(3)O(3x)-Cu interaction is able to tune the electronic structure of M(3)O(3x) and therefore the activity towards water dissociation. Further studies of the overall WGS reaction on Mg(3)O(3)/Cu(111) show that water dissociation may not be the key step to control the WGS reaction on Mg(3)O(3)/Cu(111) and the removal of H from Mg(3)O(3) can be problematic. The strong interaction between H and O from Mg(3)O(3) blocks the O sites for further water dissociation and therefore the WGS reaction. Our study observes a very different behavior of oxide clusters in such small size from the bigger ones supported on Cu(111) and provides new insight into the rational design of the WGS catalysts.

摘要

密度泛函理论(DFT)被用于研究一系列反模型催化剂 M(3)O(3x)/Cu(111)(M = Mg、Ti、Zr、Mo、W;x = 1、2、3)上水的离解和水汽变换(WGS)反应。研究发现,在 Cu 上引入各种氧化物可以促进 WGS 反应,从而降低水离解的势垒。因此,我们使用计算得到的水离解反应能作为标度描述符来筛选氧化物-Cu 模型催化剂的 WGS 活性。我们的计算表明,水离解的活性顺序为:Mg(3)O(3)/Cu(111) > Zr(3)O(6)/Cu(111) > Ti(3)O(6)/Cu(111) > W(3)O(9)/Cu(111),Mo(3)O(9)/Cu(111)。在研究的体系中,Mg(3)O(3)/Cu(111)似乎是最好的 WGS 催化剂,它能够无势垒地离解水。在这个过程中,Cu 和氧化物都直接参与反应。强烈的 M(3)O(3x)-Cu 相互作用能够调节 M(3)O(3x)的电子结构,从而影响水离解的活性。对 Mg(3)O(3)/Cu(111)上总 WGS 反应的进一步研究表明,水离解可能不是控制 Mg(3)O(3)/Cu(111)上 WGS 反应的关键步骤,并且从 Mg(3)O(3)中去除 H 可能会有问题。H 和 O 与 Mg(3)O(3)之间的强烈相互作用会阻塞进一步水离解的 O 位,从而使 WGS 反应受阻。我们的研究观察到,在如此小的尺寸下,氧化物团簇的行为与在 Cu(111)上支撑的较大团簇非常不同,为合理设计 WGS 催化剂提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验