Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
J Neurophysiol. 2012 Dec;108(11):2967-76. doi: 10.1152/jn.01183.2011. Epub 2012 Sep 5.
Ca(V)2.1 Ca(2+) channels have a dominant and specific role in initiating fast synaptic transmission at central excitatory synapses, through a close association between release sites and calcium sensors. Familial hemiplegic migraine type 1 (FHM-1) is an autosomal-dominant subtype of migraine with aura, caused by missense mutations in the CACNA1A gene that encodes the α(1A) pore-forming subunit of Ca(V)2.1 channel. We used knock-in (KI) transgenic mice harboring the FHM-1 mutation R192Q to study the consequences of this mutation in neurotransmission at the giant synapse of the auditory system formed by the presynaptic calyx of Held terminal and the postsynaptic neurons of the medial nucleus of the trapezoid body (MNTB). Although synaptic transmission seems unaffected by low-frequency stimulation in physiological Ca(2+) concentration, we observed that with low Ca(2+) concentrations (<1 mM) excitatory postsynaptic currents (EPSCs) showed increased amplitudes in R192Q KI mice compared with wild type (WT), meaning significant differences in the nonlinear calcium dependence of nerve-evoked transmitter release. In addition, when EPSCs were evoked by broadened presynaptic action potentials (achieved by inhibition of K(+) channels) via Ca(v)2.1-triggered exocytosis, R192Q KI mice exhibited further enhancement of EPSC amplitude and charge compared with WT mice. Repetitive stimulation of afferent axons to the MNTB at different frequencies caused short-term depression of EPSCs that recovered significantly faster in R192Q KI mice than in WT mice. Faster recovery in R192Q KI mice was prevented by the calcium chelator EGTA-AM, pointing to enlarged residual calcium as a key factor in accelerating the replenishment of synaptic vesicles.
钙通道(Ca(V)2.1)钙离子通道在中枢兴奋性突触快速突触传递的起始中具有主导和特定的作用,这是通过释放位点和钙传感器之间的紧密关联实现的。家族性偏瘫性偏头痛 1 型(FHM-1)是一种常染色体显性偏头痛伴先兆亚型,由 CACNA1A 基因突变引起,该基因编码 Ca(V)2.1 通道的α(1A)孔形成亚基。我们使用携带 FHM-1 突变 R192Q 的敲入(KI)转基因小鼠来研究这种突变在听觉系统巨突触神经传递中的后果,该巨突触由前突触 Held 终末的 calyx 和梯形体中核的后突触神经元形成(MNTB)。尽管在生理 Ca(2+)浓度下,低频刺激似乎不会影响突触传递,但我们观察到,在低 Ca(2+)浓度(<1 mM)下,R192Q KI 小鼠的兴奋性突触后电流(EPSC)幅度比野生型(WT)增加,这意味着神经递质释放的非线性钙依赖性存在显著差异。此外,当通过抑制 K(+)通道引起的宽化突触前动作电位(通过 Ca(v)2.1 触发的胞吐作用)诱发 EPSC 时,与 WT 小鼠相比,R192Q KI 小鼠的 EPSC 幅度和电荷量进一步增强。以不同频率刺激 MNTB 的传入轴突会导致 EPSC 的短期抑制,而 R192Q KI 小鼠的恢复速度明显快于 WT 小鼠。在 R192Q KI 小鼠中,更快的恢复速度被钙螯合剂 EGTA-AM 所阻止,这表明残留钙的增大是加速突触囊泡再填充的关键因素。