Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
J Chem Phys. 2012 Sep 7;137(9):094703. doi: 10.1063/1.4748379.
It is widely believed that when a molecule with thiol (S-H) end groups bridges a pair of gold electrodes, the S atoms bond to the gold and the thiol H atoms detach from the molecule. However, little is known regarding the details of this process, its time scale, and whether molecules with and without thiol hydrogen atoms can coexist in molecular junctions. Here, we explore theoretically how inelastic tunneling spectroscopy (IETS) can shed light on these issues. We present calculations of the geometries, low bias conductances, and IETS of propanedithiol and propanedithiolate molecular junctions with gold electrodes. We show that IETS can distinguish between junctions with molecules having no, one, or two thiol hydrogen atoms. We find that in most cases, the single-molecule junctions in the IETS experiment of Hihath et al. [Nano Lett. 8, 1673 (2008)] had no thiol H atoms, but that a molecule with a single thiol H atom may have bridged their junction occasionally. We also consider the evolution of the IETS spectrum as a gold STM tip approaches the intact S-H group at the end of a molecule bound at its other end to a second electrode. We predict the frequency of a vibrational mode of the thiol H atom to increase by a factor ~2 as the gap between the tip and molecule narrows. Therefore, IETS should be able to track the approach of the tip towards the thiol group of the molecule and detect the detachment of the thiol H atom from the molecule when it occurs.
人们普遍认为,当具有巯基(S-H)端基的分子桥接一对金电极时,S 原子与金键合,而巯基 H 原子从分子中脱离。然而,对于这个过程的细节、时间尺度以及是否具有和不具有巯基氢原子的分子可以共存于分子结中等问题,人们知之甚少。在这里,我们从理论上探讨了非弹性隧道谱(IETS)如何阐明这些问题。我们给出了具有金电极的丙二硫醇和丙二硫醇盐分子结的几何形状、低偏压电导和 IETS 的计算结果。我们表明,IETS 可以区分具有无、一个或两个巯基氢原子的结。我们发现,在大多数情况下,Hihath 等人的 IETS 实验中的单分子结[Nano Lett. 8, 1673 (2008)]没有巯基 H 原子,但偶尔可能有一个巯基 H 原子的分子桥接了它们的结。我们还考虑了当金 STM 针尖接近与其另一端相连的第二个电极上的分子的完整 S-H 基团时,IETS 谱的演变。我们预测,当针尖和分子之间的间隙变窄时,硫醇 H 原子的振动模式的频率会增加约 2 倍。因此,IETS 应该能够跟踪针尖靠近分子的硫醇基团,并在硫醇 H 原子从分子中脱离时检测到它。