Suppr超能文献

致病奈瑟菌属的转铁蛋白-铁摄取系统。

The transferrin-iron import system from pathogenic Neisseria species.

机构信息

National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Mol Microbiol. 2012 Oct;86(2):246-57. doi: 10.1111/mmi.12002. Epub 2012 Sep 7.

Abstract

Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis.

摘要

属内的两种致病性物种淋病奈瑟菌和脑膜炎奈瑟菌会引起淋病和脑膜炎。虽然有针对脑膜炎奈瑟菌四个血清群的疫苗来预防疾病,但目前还没有针对血清群 B 或淋病奈瑟菌的商业疫苗。此外,现有的疫苗有明显的局限性,而且随着抗生素耐药性成为一个令人担忧的问题,寻找有效的疫苗靶点来引发针对奈瑟菌属的持久保护变得更加紧迫。疫苗开发的一种策略是针对奈瑟菌的铁摄取系统。没有铁,奈瑟菌就无法生存,因此,这些铁摄取系统往往相对保守,是有前途的疫苗靶点,有可能对淋病奈瑟菌和脑膜炎奈瑟菌感染提供广泛的保护。最近报道了奈瑟菌受体蛋白 TbpA 和 TbpB 的晶体结构,这两种蛋白都与人类转铁蛋白结合,而转铁蛋白是一种通常负责将铁输送到人类细胞的铁结合蛋白,这一进展促进了这些努力。在这里,我们综述了最近的结构报告,并结合现有功能研究进行了分析,以推导出致病性奈瑟菌如何能够劫持人类铁转运系统来维持自身生存和发病机制的机制。

相似文献

1
The transferrin-iron import system from pathogenic Neisseria species.
Mol Microbiol. 2012 Oct;86(2):246-57. doi: 10.1111/mmi.12002. Epub 2012 Sep 7.
2
Structural basis for iron piracy by pathogenic Neisseria.
Nature. 2012 Feb 12;483(7387):53-8. doi: 10.1038/nature10823.
3
Structural insight into the lactoferrin receptors from pathogenic Neisseria.
J Struct Biol. 2013 Oct;184(1):83-92. doi: 10.1016/j.jsb.2013.02.009. Epub 2013 Feb 24.
4
Utility of Hybrid Transferrin Binding Protein Antigens for Protection Against Pathogenic Neisseria Species.
Front Immunol. 2019 Feb 19;10:247. doi: 10.3389/fimmu.2019.00247. eCollection 2019.
5
Point Mutations in TbpA Abrogate Human Transferrin Binding in Neisseria gonorrhoeae.
Infect Immun. 2022 Nov 17;90(11):e0041422. doi: 10.1128/iai.00414-22. Epub 2022 Nov 2.
6
A dynamic model of the meningococcal transferrin receptor.
J Theor Biol. 1999 Jun 21;198(4):497-505. doi: 10.1006/jtbi.1999.0928.
10
The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria gonorrhoeae.
Clin Infect Dis. 2019 Sep 13;69(7):1101-1111. doi: 10.1093/cid/ciy1061.

引用本文的文献

4
Mechanisms of host adaptation by bacterial pathogens.
FEMS Microbiol Rev. 2024 Jun 20;48(4). doi: 10.1093/femsre/fuae019.
6
Structural and functional insights into iron acquisition from lactoferrin and transferrin in Gram-negative bacterial pathogens.
Biometals. 2023 Jun;36(3):683-702. doi: 10.1007/s10534-022-00466-6. Epub 2022 Nov 23.
7
Point Mutations in TbpA Abrogate Human Transferrin Binding in Neisseria gonorrhoeae.
Infect Immun. 2022 Nov 17;90(11):e0041422. doi: 10.1128/iai.00414-22. Epub 2022 Nov 2.
8
Stealthy microbes: How hijacks bulwarked iron during infection.
Front Cell Infect Microbiol. 2022 Sep 15;12:1017348. doi: 10.3389/fcimb.2022.1017348. eCollection 2022.
9
The microbiota in eosinophilic esophagitis: A systematic review.
J Gastroenterol Hepatol. 2022 Sep;37(9):1673-1684. doi: 10.1111/jgh.15921. Epub 2022 Jul 12.
10
Targeting bacterial transferrin and lactoferrin receptors for vaccines.
Trends Microbiol. 2022 Sep;30(9):820-830. doi: 10.1016/j.tim.2022.01.017. Epub 2022 Feb 26.

本文引用的文献

1
Microbial siderophores: a mini review.
J Basic Microbiol. 2013 Apr;53(4):303-17. doi: 10.1002/jobm.201100552. Epub 2012 Jun 26.
2
Summary of notifiable diseases--United States, 2010.
MMWR Morb Mortal Wkly Rep. 2012 Jun 1;59(53):1-111.
4
The structural basis of transferrin sequestration by transferrin-binding protein B.
Nat Struct Mol Biol. 2012 Feb 19;19(3):358-60. doi: 10.1038/nsmb.2251.
5
Structural basis for iron piracy by pathogenic Neisseria.
Nature. 2012 Feb 12;483(7387):53-8. doi: 10.1038/nature10823.
7
The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae.
Infect Immun. 2011 Dec;79(12):4764-76. doi: 10.1128/IAI.05806-11. Epub 2011 Sep 26.
9
Experimental meningococcal sepsis in congenic transgenic mice expressing human transferrin.
PLoS One. 2011;6(7):e22210. doi: 10.1371/journal.pone.0022210. Epub 2011 Jul 21.
10
TonB-Dependent Transporters Expressed by Neisseria gonorrhoeae.
Front Microbiol. 2011 May 27;2:117. doi: 10.3389/fmicb.2011.00117. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验