Suppr超能文献

用多电极阵列进行高效的细胞外记录的计算模拟。

Computationally efficient simulation of extracellular recordings with multielectrode arrays.

机构信息

Department of Electrical and Information Technology, Lund University, Box 118, 22100 Lund, Sweden.

出版信息

J Neurosci Methods. 2012 Oct 15;211(1):133-44. doi: 10.1016/j.jneumeth.2012.08.011. Epub 2012 Aug 30.

Abstract

In this paper we present a novel, computationally and memory efficient way of modeling the spatial dependency of measured spike waveforms in extracellular recordings of neuronal activity. We use compartment models to simulate action potentials in neurons and then apply linear source approximation to calculate the resulting extracellular spike waveform on a three dimensional grid of measurement points surrounding the neurons. We then apply traditional compression techniques and polynomial fitting to obtain a compact mathematical description of the spatial dependency of the spike waveform. We show how the compressed models can be used to efficiently calculate the spike waveform from a neuron in a large set of measurement points simultaneously and how the same procedure can be inversed to calculate the spike waveforms from a large set of neurons at a single electrode position. The compressed models have been implemented into an object oriented simulation tool that allows the simulation of multielectrode recordings that capture the variations in spike waveforms that are expected to arise between the different recording channels. The computational simplicity of our approach allows the simulation of a multi-channel recording of signals from large populations of neurons while simulating the activity of every neuron with a high level of detail. We have validated our compressed models against the original data obtained from the compartment models and we have shown, by example, how the simulation approach presented here can be used to quantify the performance in spike sorting as a function of electrode position.

摘要

在本文中,我们提出了一种新颖的、计算和内存效率高的方法,用于对神经元活动的细胞外记录中测量的尖峰波形的空间相关性进行建模。我们使用室模型来模拟神经元中的动作电位,然后应用线性源逼近在围绕神经元的三维测量点网格上计算得到的细胞外尖峰波形。然后,我们应用传统的压缩技术和多项式拟合来获得尖峰波形的空间相关性的紧凑数学描述。我们展示了如何使用压缩模型来有效地同时从大量测量点中的一个神经元计算尖峰波形,以及如何反转相同的过程来从单个电极位置的大量神经元计算尖峰波形。压缩模型已被实现到一个面向对象的模拟工具中,该工具允许模拟多电极记录,这些记录捕获了不同记录通道之间预期出现的尖峰波形的变化。我们的方法计算简单,可以模拟来自大量神经元的多通道记录,同时以高度详细的方式模拟每个神经元的活动。我们已经根据从室模型获得的原始数据对我们的压缩模型进行了验证,并通过示例展示了如何使用这里提出的模拟方法来定量评估作为电极位置函数的尖峰分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验