Hagen Espen, Næss Solveig, Ness Torbjørn V, Einevoll Gaute T
Department of Physics, University of Oslo, Oslo, Norway.
Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.
Front Neuroinform. 2018 Dec 18;12:92. doi: 10.3389/fninf.2018.00092. eCollection 2018.
Recordings of extracellular electrical, and later also magnetic, brain signals have been the dominant technique for measuring brain activity for decades. The interpretation of such signals is however nontrivial, as the measured signals result from both local and distant neuronal activity. In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons. Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed. This allows for the development of computational tools implementing forward models grounded in the biophysics underlying electrical and magnetic measurement modalities. LFPy (LFPy.readthedocs.io) incorporated a well-established scheme for predicting extracellular potentials of individual neurons with arbitrary levels of biological detail. It relies on NEURON (neuron.yale.edu) to compute transmembrane currents of multicompartment neurons which is then used in combination with an electrostatic forward model. Its functionality is now extended to allow for modeling of networks of multicompartment neurons with concurrent calculations of extracellular potentials and current dipole moments. The current dipole moments are then, in combination with suitable volume-conductor head models, used to compute non-invasive measures of neuronal activity, like scalp potentials (electroencephalographic recordings; EEG) and magnetic fields outside the head (magnetoencephalographic recordings; MEG). One such built-in head model is the four-sphere head model incorporating the different electric conductivities of brain, cerebrospinal fluid, skull and scalp. We demonstrate the new functionality of the software by constructing a network of biophysically detailed multicompartment neuron models from the Neocortical Microcircuit Collaboration (NMC) Portal (bbp.epfl.ch/nmc-portal) with corresponding statistics of connections and synapses, and compute -like extracellular potentials (local field potentials, LFP; electrocorticographical signals, ECoG) and corresponding current dipole moments. From the current dipole moments we estimate corresponding EEG and MEG signals using the four-sphere head model. We also show strong scaling performance of LFPy with different numbers of message-passing interface (MPI) processes, and for different network sizes with different density of connections. The open-source software LFPy is equally suitable for execution on laptops and in parallel on high-performance computing (HPC) facilities and is publicly available on GitHub.com.
几十年来,细胞外电信号以及后来的脑磁信号记录一直是测量大脑活动的主要技术。然而,对这些信号的解释并非易事,因为所测量的信号是局部和远处神经元活动共同作用的结果。在容积导体理论中,细胞外电位可以根据神经元跨膜电流贡献的距离加权总和来计算。在相同的跨膜电流情况下,也可以计算出在脑内和脑外记录到的磁场贡献。这使得能够开发基于电和磁测量方式背后生物物理学的正向模型的计算工具。LFPy(LFPy.readthedocs.io)纳入了一种成熟的方案,用于预测具有任意生物细节水平的单个神经元的细胞外电位。它依靠NEURON(neuron.yale.edu)来计算多室神经元的跨膜电流,然后将其与静电正向模型结合使用。其功能现在已扩展,允许对多室神经元网络进行建模,并同时计算细胞外电位和电流偶极矩。然后,电流偶极矩与合适的容积导体头部模型相结合,用于计算神经元活动的非侵入性测量值,如头皮电位(脑电图记录;EEG)和头部外部的磁场(脑磁图记录;MEG)。其中一个内置的头部模型是包含大脑、脑脊液、颅骨和头皮不同电导率的四球头部模型。我们通过从新皮层微电路协作(NMC)门户(bbp.epfl.ch/nmc-portal)构建一个具有生物物理细节的多室神经元模型网络,并结合相应的连接和突触统计数据,来演示该软件的新功能,并计算类似的细胞外电位(局部场电位,LFP;皮层电图信号,ECoG)和相应的电流偶极矩。根据电流偶极矩,我们使用四球头部模型估计相应的EEG和MEG信号。我们还展示了LFPy在不同数量的消息传递接口(MPI)进程下,以及在不同连接密度的不同网络规模下的强缩放性能。开源软件LFPy同样适用于在笔记本电脑上运行以及在高性能计算(HPC)设施上并行运行,并且可在GitHub.com上公开获取。