State Key Laboratory of AgroBiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100094, China.
Mol Immunol. 2013 Mar;53(3):214-7. doi: 10.1016/j.molimm.2012.08.009. Epub 2012 Sep 4.
The activation-induced cytidine deaminase (AID) initiates Ig gene hypermutation by converting cytosine to uracil (U) and generating a U:G lesion. Genetic and biochemical studies suggest that the AID-triggered U:G lesions are processed by three mutagenic pathways to induce mutations at both C:G and A:T pairs. First, direct replication of the U:G lesion leads to C to T and G to A transitions. Second, U can be excised by the uracil DNA glycosylase (UNG) and the replication/processing of the resulting abasic site leads to transversions and transitions at C:G pairs. Third, the U:G lesion is recognized by an atypical mismatch repair (MMR) pathway which generates mutations at A:T pairs in a DNA polymerase η (POLH)-dependent manner. To further explore whether these three mutagenic pathways function competitively or independently, we have analyzed Ig gene hypermutation in mice deficient in both UNG and POLH. Compared with WT mice, UNG deficiency caused elevated frequency of C:G mutations, suggesting that UNG-mediated U excision led to error-free as well as error-prone repair. In contrast, UNG deficiency did not affect the frequency and patterns of A:T mutations, suggesting that the MMR did not target U:G lesions normally recognized and processed by UNG. In addition, POLH deficiency did not affect the frequency and patterns of C:G mutations and UNG POLH double deficiency showed an additive effect of single deficiency. Based on these observations and previous results, along with the recent finding that UNG excises AID-triggered U predominantly during G1 phase of the cell cycle, it appears that UNG and MMR targets U:G lesions generated during G1 and S phases of the cell cycle, respectively.
激活诱导胞嘧啶脱氨酶 (AID) 通过将胞嘧啶转化为尿嘧啶 (U) 并产生 U:G 损伤来启动 Ig 基因超突变。遗传和生化研究表明,AID 触发的 U:G 损伤通过三种诱变途径进行处理,以诱导 C:G 和 A:T 对的突变。首先,U:G 损伤的直接复制导致 C 到 T 和 G 到 A 的转换。其次,U 可以被尿嘧啶 DNA 糖基化酶 (UNG) 切除,并且由此产生的无碱基位点的复制/处理导致 C:G 对的颠换和转换。第三,U:G 损伤被一种非典型的错配修复 (MMR) 途径识别,该途径以 DNA 聚合酶 η (POLH) 依赖性方式在 A:T 对产生突变。为了进一步探讨这三种诱变途径是竞争还是独立发挥作用,我们分析了 UNG 和 POLH 双缺陷小鼠中的 Ig 基因超突变。与 WT 小鼠相比,UNG 缺陷导致 C:G 突变频率升高,表明 UNG 介导的 U 切除导致无差错和易错修复。相反,UNG 缺陷不影响 A:T 突变的频率和模式,表明 MMR 不针对 UNG 正常识别和处理的 U:G 损伤。此外,POLH 缺陷不影响 C:G 突变的频率和模式,UNG POLH 双缺陷显示出单缺陷的附加效应。基于这些观察结果和以前的结果,以及最近发现 UNG 在细胞周期的 G1 期主要切除 AID 触发的 U,似乎 UNG 和 MMR 分别靶向细胞周期的 G1 和 S 期产生的 U:G 损伤。