Suppr超能文献

个体发育过程中的能量对称与不对称

Ontogenetic symmetry and asymmetry in energetics.

作者信息

De Roos André M, Metz Johan A J, Persson Lennart

机构信息

Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.

出版信息

J Math Biol. 2013 Mar;66(4-5):889-914. doi: 10.1007/s00285-012-0583-0. Epub 2012 Sep 9.

Abstract

Body size (≡ biomass) is the dominant determinant of population dynamical processes such as giving birth or dying in almost all species, with often drastically different behaviour occurring in different parts of the growth trajectory, while the latter is largely determined by food availability at the different life stages. This leads to the question under what conditions unstructured population models, formulated in terms of total population biomass, still do a fair job. To contribute to answering this question we first analyze the conditions under which a size-structured model collapses to a dynamically equivalent unstructured one in terms of total biomass. The only biologically meaningful case where this occurs is when body size does not affect any of the population dynamic processes, this is the case if and only if the mass-specific ingestion rate, the mass-specific biomass production and the mortality rate of the individuals are independent of size, a condition to which we refer as "ontogenetic symmetry". Intriguingly, under ontogenetic symmetry the equilibrium biomass-body size spectrum is proportional to 1/size, a form that has been conjectured for marine size spectra and subsequently has been used as prior assumption in theoretical papers dealing with the latter. As a next step we consider an archetypical class of models in which reproduction takes over from growth upon reaching an adult body size, in order to determine how quickly discrepancies from ontogenetic symmetry lead to relevant novel population dynamical phenomena. The phenomena considered are biomass overcompensation, when additional imposed mortality leads, rather unexpectedly, to an increase in the equilibrium biomass of either the juveniles or the adults (a phenomenon with potentially big consequences for predators of the species), and the occurrence of two types of size-structure driven oscillations, juvenile-driven cycles with separated extended cohorts, and adult-driven cycles in which periodically a front of relatively steeply decreasing frequencies moves up the size distribution. A small discrepancy from symmetry can already lead to biomass overcompensation; size-structure driven cycles only occur for somewhat larger discrepancies.

摘要

身体大小(等同于生物量)几乎是所有物种中种群动态过程(如出生或死亡)的主要决定因素,在生长轨迹的不同阶段往往会出现截然不同的行为,而后者在很大程度上由不同生命阶段的食物供应决定。这就引出了一个问题:在何种条件下,以总种群生物量来表述的非结构化种群模型仍能较好地发挥作用。为了有助于回答这个问题,我们首先分析在何种条件下,一个大小结构模型会在总生物量方面坍缩为一个动态等效的非结构化模型。这种情况发生的唯一具有生物学意义的情形是,身体大小不影响任何种群动态过程,当且仅当个体的单位质量摄食率、单位质量生物量产量和死亡率与大小无关时才会如此,我们将这一条件称为“个体发育对称性”。有趣的是,在个体发育对称性条件下,平衡生物量 - 身体大小谱与1/大小成正比,这种形式已被推测用于海洋大小谱,随后在处理后者的理论论文中被用作先验假设。接下来,我们考虑一类典型的模型,其中繁殖在达到成年身体大小后从生长中接管,以确定与个体发育对称性的差异多快会导致相关的新种群动态现象。所考虑的现象包括生物量过补偿,即额外施加的死亡率会出人意料地导致幼体或成体的平衡生物量增加(这一现象对该物种的捕食者可能有重大影响),以及两种由大小结构驱动的振荡的出现,即具有分离扩展队列的幼体驱动周期,以及成年驱动周期,其中相对频率急剧下降的前沿会周期性地向上移动大小分布。与对称性的微小差异就可能导致生物量过补偿;只有差异稍大时才会出现由大小结构驱动的周期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验