Suppr超能文献

生理结构种群的有限维状态表示

Finite dimensional state representation of physiologically structured populations.

作者信息

Diekmann Odo, Gyllenberg Mats, Metz Johan A J

机构信息

Department of Mathematics, University of Utrecht, P.O. Box 80010, 3508 TA, Utrecht, The Netherlands.

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014, Helsinki, Finland.

出版信息

J Math Biol. 2020 Jan;80(1-2):205-273. doi: 10.1007/s00285-019-01454-0. Epub 2019 Dec 21.

Abstract

In a physiologically structured population model (PSPM) individuals are characterised by continuous variables, like age and size, collectively called their i-state. The world in which these individuals live is characterised by another set of variables, collectively called the environmental condition. The model consists of submodels for (i) the dynamics of the i-state, e.g. growth and maturation, (ii) survival, (iii) reproduction, with the relevant rates described as a function of (i-state, environmental condition), (iv) functions of (i-state, environmental condition), like biomass or feeding rate, that integrated over the i-state distribution together produce the output of the population model. When the environmental condition is treated as a given function of time (input), the population model becomes linear in the state. Density dependence and interaction with other populations is captured by feedback via a shared environment, i.e., by letting the environmental condition be influenced by the populations' outputs. This yields a systematic methodology for formulating community models by coupling nonlinear input-output relations defined by state-linear population models. For some combinations of submodels an (infinite dimensional) PSPM can without loss of relevant information be replaced by a finite dimensional ODE. We then call the model ODE-reducible. The present paper provides (a) a test for checking whether a PSPM is ODE reducible, and (b) a catalogue of all possible ODE-reducible models given certain restrictions, to wit: (i) the i-state dynamics is deterministic, (ii) the i-state space is one-dimensional, (iii) the birth rate can be written as a finite sum of environment-dependent distributions over the birth states weighted by environment independent 'population outputs'. So under these restrictions our conditions for ODE-reducibility are not only sufficient but in fact necessary. Restriction (iii) has the desirable effect that it guarantees that the population trajectories are after a while fully determined by the solution of the ODE so that the latter gives a complete picture of the dynamics of the population and not just of its outputs.

摘要

在生理结构种群模型(PSPM)中,个体由连续变量表征,如年龄和大小,这些变量统称为个体状态(i - 状态)。这些个体所生活的世界由另一组变量表征,统称为环境条件。该模型由以下子模型组成:(i)i - 状态的动态变化,例如生长和成熟;(ii)生存;(iii)繁殖,相关速率描述为(i - 状态,环境条件)的函数;(iv)(i - 状态,环境条件)的函数,如生物量或摄食率,这些函数在i - 状态分布上积分共同产生种群模型的输出。当环境条件被视为时间的给定函数(输入)时,种群模型在状态上变为线性。密度依赖性以及与其他种群的相互作用通过共享环境的反馈来体现,即让环境条件受种群输出的影响。这产生了一种通过耦合由状态线性种群模型定义的非线性输入 - 输出关系来构建群落模型的系统方法。对于某些子模型的组合,一个(无限维)PSPM可以在不损失相关信息的情况下被一个有限维常微分方程(ODE)替代。然后我们称该模型是ODE可约的。本文提供了:(a)一个用于检查PSPM是否为ODE可约的测试;(b)在某些限制条件下所有可能的ODE可约模型的目录,具体如下:(i)i - 状态动态是确定性的;(ii)i - 状态空间是一维的;(iii)出生率可以写成出生状态上依赖于环境的分布的有限和,由与环境无关的“种群输出”加权。所以在这些限制条件下,我们的ODE可约性条件不仅是充分的,实际上也是必要的。限制条件(iii)具有这样一个理想效果,即它保证种群轨迹在一段时间后完全由ODE的解决定,这样后者就能完整呈现种群的动态,而不仅仅是其输出情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5659/7012992/ec1da9ce11e6/285_2019_1454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验