Jha Sumit Kumar, Dutta Raj Gautam, Langmead Christopher J, Jha Susmit, Sassano Emily
EECS Department, University of Central Florida, Orlando, FL 32816, USA.
Int J Bioinform Res Appl. 2012;8(3-4):263-85. doi: 10.1504/IJBRA.2012.048964.
Insulin pump controllers seek to alleviate the chronic suffering caused by diabetes that affects over 6% of the world population. The design of control laws for insulin pump controllers has been well studied. However, the parameters involved in the control law are difficult to synthesize. Traditionally, ad hoc approaches using animal models and random sampling have been used to construct these parameters. We suggest a synthesis algorithm that uses Bayesian statistical model validation to reduce the number of simulations needed. We apply this algorithm to the problem of insulin pump controller synthesis using in silico simulation of the glucose-insulin metabolism model.
胰岛素泵控制器旨在减轻糖尿病所带来的长期痛苦,全球超过6%的人口受糖尿病影响。胰岛素泵控制器控制律的设计已得到充分研究。然而,控制律中涉及的参数难以合成。传统上,一直采用基于动物模型和随机抽样的特殊方法来构建这些参数。我们提出一种合成算法,该算法使用贝叶斯统计模型验证来减少所需的模拟次数。我们将此算法应用于胰岛素泵控制器合成问题,采用葡萄糖 - 胰岛素代谢模型的计算机模拟。