Hussain Faraz, Jha Sumit K, Jha Susmit, Langmead Christopher J
Computer Science Department, University of Central Florida, Orlando, FL 32816, USA.
Intel Strategic CAD Labs, Portland, OR 9712, USA.
Int J Bioinform Res Appl. 2014;10(4-5):519-39. doi: 10.1504/IJBRA.2014.062998.
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
随机模型越来越多地用于研究生化系统的行为。虽然此类模型的结构通常可以从第一原理轻松获得,但模型中未知的定量特征作为参数纳入模型。从实验观察到的事实中通过算法发现参数值,对计算系统生物学界来说仍然是一个挑战。我们提出了一种新的参数发现算法,该算法使用模拟退火、序贯假设检验和统计模型检查来学习随机模型中的参数。我们将我们的技术应用于用于人工胰腺计算机模拟验证的葡萄糖和胰岛素代谢模型,并通过为该模型中的参数合成开发基于CUDA的并行实现来证明其有效性。