Suppr超能文献

病理性震颤中运动单位行为的无创特征化。

Non-invasive characterization of motor unit behaviour in pathological tremor.

机构信息

University of Maribor, Maribor, Slovenia.

出版信息

J Neural Eng. 2012 Oct;9(5):056011. doi: 10.1088/1741-2560/9/5/056011. Epub 2012 Sep 10.

Abstract

This paper presents the fully automatic identification of motor unit spike trains from high-density surface electromyograms (EMG) in pathological tremor. First, a mathematical derivation is provided to theoretically prove the possibility of decomposing noise-free high-density surface EMG signals into motor unit spike trains with high correlation, which are typical of tremor contractions. Further, the proposed decomposition method is tested on simulated signals with different levels of noise and on experimental signals from 14 tremor-affected patients. In the case of simulated tremor with central frequency ranging from 5 Hz to 11 Hz and signal-to-noise ratio of 20 dB, the method identified ∼8 motor units per contraction with sensitivity in spike timing identification ≥ 95% and false alarm and miss rates ≤ 5%. In experimental signals, the number of identified motor units varied substantially (range 0-21) across patients and contraction types, as expected. The behaviour of the identified motor units was consistent with previous data obtained by intramuscular EMG decomposition. These results demonstrate for the first time the possibility of a fully non-invasive investigation of motor unit behaviour in tremor-affected patients. The method provides a new means for physiological investigations of pathological tremor.

摘要

本文提出了一种从病理震颤的高密度表面肌电图(EMG)中自动识别运动单位锋电位序列的方法。首先,通过数学推导从理论上证明了将无噪声的高密度表面 EMG 信号分解为具有高度相关性的运动单位锋电位序列的可能性,这些序列是震颤收缩的典型特征。进一步,在具有不同噪声水平的模拟信号和来自 14 名震颤患者的实验信号上对所提出的分解方法进行了测试。在中央频率范围为 5 Hz 至 11 Hz 且信噪比为 20 dB 的模拟震颤的情况下,该方法每收缩识别约 8 个运动单位,其锋电位定时识别的灵敏度≥95%,假警和漏检率≤5%。在实验信号中,如预期的那样,运动单位的识别数量在患者和收缩类型之间有很大差异(范围 0-21)。所识别的运动单位的行为与通过肌内 EMG 分解获得的先前数据一致。这些结果首次证明了在震颤患者中进行完全非侵入性运动单位行为研究的可能性。该方法为病理性震颤的生理学研究提供了一种新的手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验