Suppr超能文献

个性化步态神经假体的适应策略

Adaptation Strategies for Personalized Gait Neuroprosthetics.

作者信息

Koelewijn Anne D, Audu Musa, Del-Ama Antonio J, Colucci Annalisa, Font-Llagunes Josep M, Gogeascoechea Antonio, Hnat Sandra K, Makowski Nathan, Moreno Juan C, Nandor Mark, Quinn Roger, Reichenbach Marc, Reyes Ryan-David, Sartori Massimo, Soekadar Surjo, Triolo Ronald J, Vermehren Mareike, Wenger Christian, Yavuz Utku S, Fey Dietmar, Beckerle Philipp

机构信息

Biomechanical Data Analysis and Creation (BIOMAC) Group, Machine Learning and Data Analytics Lab, Faculty of Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.

Department of Veterans Affairs, Louis Stokes Clevel and Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, OH, United States.

出版信息

Front Neurorobot. 2021 Dec 16;15:750519. doi: 10.3389/fnbot.2021.750519. eCollection 2021.

Abstract

Personalization of gait neuroprosthetics is paramount to ensure their efficacy for users, who experience severe limitations in mobility without an assistive device. Our goal is to develop assistive devices that collaborate with and are tailored to their users, while allowing them to use as much of their existing capabilities as possible. Currently, personalization of devices is challenging, and technological advances are required to achieve this goal. Therefore, this paper presents an overview of challenges and research directions regarding an interface with the peripheral nervous system, an interface with the central nervous system, and the requirements of interface computing architectures. The interface should be modular and adaptable, such that it can provide assistance where it is needed. Novel data processing technology should be developed to allow for real-time processing while accounting for signal variations in the human. Personalized biomechanical models and simulation techniques should be developed to predict assisted walking motions and interactions between the user and the device. Furthermore, the advantages of interfacing with both the brain and the spinal cord or the periphery should be further explored. Technological advances of interface computing architecture should focus on learning on the chip to achieve further personalization. Furthermore, energy consumption should be low to allow for longer use of the neuroprosthesis. In-memory processing combined with resistive random access memory is a promising technology for both. This paper discusses the aforementioned aspects to highlight new directions for future research in gait neuroprosthetics.

摘要

步态神经假体的个性化对于确保其对使用者的有效性至关重要,这些使用者在没有辅助设备的情况下行动能力受到严重限制。我们的目标是开发与使用者协作并为其量身定制的辅助设备,同时让他们尽可能多地利用自身现有的能力。目前,设备的个性化具有挑战性,需要技术进步来实现这一目标。因此,本文概述了与外周神经系统的接口、与中枢神经系统的接口以及接口计算架构的要求等方面的挑战和研究方向。该接口应具有模块化和适应性,以便能够在需要的地方提供帮助。应开发新颖的数据处理技术,以实现实时处理,同时考虑人体信号的变化。应开发个性化的生物力学模型和模拟技术,以预测辅助行走运动以及使用者与设备之间的相互作用。此外,应进一步探索与大脑和脊髓或外周同时进行接口连接的优势。接口计算架构的技术进步应专注于片上学习以实现进一步的个性化。此外,能耗应较低,以便神经假体能够使用更长时间。内存处理与电阻式随机存取存储器相结合是实现这两者的一项有前景的技术。本文讨论上述各个方面,以突出步态神经假体未来研究的新方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75e0/8716811/d1dea61ac326/fnbot-15-750519-g0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验