School of Life Sciences-LifeNet, Freiburg Institute for Advanced Studies, University of Freiburg, Albertstrasse 19, D-79104 Freiburg im Breisgau, Germany.
Bioinformatics. 2012 Sep 15;28(18):2325-32. doi: 10.1093/bioinformatics/bts434.
Transcriptional regulatory network inference methods have been studied for years. Most of them rely on complex mathematical and algorithmic concepts, making them hard to adapt, re-implement or integrate with other methods. To address this problem, we introduce a novel method based on a minimal statistical model for observing transcriptional regulatory interactions in noisy expression data, which is conceptually simple, easy to implement and integrate in any statistical software environment and equally well performing as existing methods.
We developed a method to infer regulatory interactions based on a model where transcription factors (TFs) and their targets are both differentially expressed in a gene-specific, critical sample contrast, as measured by repeated two-way t-tests. Benchmarking on standard Escherichia coli and yeast reference datasets showed that this method performs equally well as the best existing methods. Analysis of the predicted interactions suggested that it works best to infer context-specific TF-target interactions which only co-express locally. We confirmed this hypothesis on a dataset of >1000 normal human tissue samples, where we found that our method predicts highly tissue-specific and functionally relevant interactions, whereas a global co-expression method only associates general TFs to non-specific biological processes.
A software tool called TwixTrix is available from http://twixtrix.googlecode.com.
Supplementary Material is available from http://www.roslin.ed.ac.uk/tom-michoel/supplementary-data.
转录调控网络推断方法已经研究了多年。它们中的大多数都依赖于复杂的数学和算法概念,使得它们难以适应、重新实现或与其他方法集成。为了解决这个问题,我们引入了一种基于观察噪声表达数据中转录调控相互作用的最小统计模型的新方法,该方法概念简单,易于实现和集成到任何统计软件环境中,并且与现有方法具有同等性能。
我们开发了一种基于模型的方法来推断调控相互作用,该模型假设转录因子(TFs)及其靶基因在特定的、关键的样本对比中都有差异表达,这是通过重复双向 t 检验来衡量的。在标准的大肠杆菌和酵母参考数据集上的基准测试表明,该方法与最好的现有方法具有同等性能。对预测相互作用的分析表明,它最适合推断仅局部共表达的特定于上下文的 TF-靶相互作用。我们在一个超过 1000 个正常人类组织样本的数据集上验证了这一假设,发现我们的方法预测了高度组织特异性和功能相关的相互作用,而全局共表达方法仅将一般的 TF 与非特异性的生物学过程相关联。
一个名为 TwixTrix 的软件工具可从 http://twixtrix.googlecode.com 获得。
补充材料可从 http://www.roslin.ed.ac.uk/tom-michoel/supplementary-data 获得。