Suppr超能文献

铜绿假单胞菌共生在囊性纤维化患者慢性定植的气道中。

Pseudomonas aeruginosa syntrophy in chronically colonized airways of cystic fibrosis patients.

机构信息

Microbiology Laboratory, Department of Laboratories and Pathology, Seattle, Washington, USA.

出版信息

Antimicrob Agents Chemother. 2012 Nov;56(11):5971-81. doi: 10.1128/AAC.01371-12. Epub 2012 Sep 10.

Abstract

Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients undergo remarkable phenotypic divergence over time, including loss of pigmentation, hemolysis, motility, and quorum sensing and emergence of antibiotic hypersusceptibility and/or auxotrophism. With prolonged antibiotic treatment and steady decline in lung function in chronically infected patients, the divergent characteristics associated with CF isolates have traditionally been regarded as "adapted/unusual virulence," despite the degenerative nature of these adaptations. We examined the phenotypic and genotypic diversity in clonally related isogenic strains of P. aeruginosa from individual CF patients. Our observations support a novel model of intra-airway pseudomonal syntrophy and accompanying loss of virulence. A 2007 calendar year collection of CF P. aeruginosa isolates (n = 525) from 103 CF patients yielded in vitro MICs of sulfamethoxazole-trimethoprim (SMX-TMP, which typically has no activity against P. aeruginosa) ranging from 0.02 to >32 μg/ml (median, 1.5). Coisolation of clonally related SMX-TMP-susceptible and -resistant P. aeruginosa strains from the same host was common (57%), as were isogenic coisolates with mutations in efflux gene determinants (mexR, mexAB-oprM, and mexZ) and genes governing DNA mismatch repair (mutL and mutS). In this cohort, complete in vitro growth complementation between auxotrophic and prototrophic P. aeruginosa isogenic strains was evident and concurrent with the coding sequence mosaicism in resistance determinants. These observations suggest that syntrophic clonal strains evolve in situ in an organized colonial structure. We propose that P. aeruginosa adopts a multicellular lifestyle in CF patients due to host selection of an energetically favorable, less-virulent microbe restricted within and symbiotic with the airway over the host's lifetime.

摘要

铜绿假单胞菌分离株从囊性纤维化(CF)患者经历显著的表型分歧随着时间的推移,包括色素沉着,溶血,运动和群体感应的丧失和抗生素敏感性和/或营养缺陷的出现。随着抗生素治疗的延长和慢性感染患者肺功能的稳定下降,与 CF 分离株相关的分歧特征传统上被认为是“适应/不寻常的毒力”,尽管这些适应是退行性的。我们检查了来自个体 CF 患者的克隆相关同源同基因铜绿假单胞菌的表型和基因型多样性。我们的观察结果支持了一种新的气道内假单胞菌共生和伴随毒力丧失的模型。2007 年从 103 名 CF 患者中收集的 CF 铜绿假单胞菌分离株(n = 525)的年度收集物产生了磺胺甲恶唑-甲氧苄啶(SMX-TMP,通常对铜绿假单胞菌没有活性)的体外 MIC 值范围为 0.02 至>32μg/ml(中位数为 1.5)。从同一宿主共分离出克隆相关的 SMX-TMP 敏感和耐药铜绿假单胞菌菌株是常见的(57%),还有与外排基因决定因素(mexR,mexAB-oprM 和 mexZ)和 DNA 错配修复基因(mutL 和 mutS)突变的同基因共分离物。在该队列中,在体外完全生长互补在营养缺陷和原养型铜绿假单胞菌同基因菌株之间是明显的,并且与耐药决定因素的编码序列镶嵌现象同时发生。这些观察结果表明,共生克隆菌株在原位以有组织的殖民地结构进化。我们提出,由于宿主选择能量有利,较少毒力的微生物在宿主的一生中受到限制并与气道共生,因此铜绿假单胞菌在 CF 患者中采用多细胞生活方式。

相似文献

1
Pseudomonas aeruginosa syntrophy in chronically colonized airways of cystic fibrosis patients.
Antimicrob Agents Chemother. 2012 Nov;56(11):5971-81. doi: 10.1128/AAC.01371-12. Epub 2012 Sep 10.
3
Great phenotypic and genetic variation among successive chronic Pseudomonas aeruginosa from a cystic fibrosis patient.
PLoS One. 2018 Sep 13;13(9):e0204167. doi: 10.1371/journal.pone.0204167. eCollection 2018.
4
Molecular Epidemiology of Mutations in Antimicrobial Resistance Loci of Pseudomonas aeruginosa Isolates from Airways of Cystic Fibrosis Patients.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6726-6734. doi: 10.1128/AAC.00724-16. Print 2016 Nov.
5
Heterogeneous Antimicrobial Susceptibility Characteristics in Isolates from Cystic Fibrosis Patients.
mSphere. 2018 Mar 14;3(2). doi: 10.1128/mSphere.00615-17. eCollection 2018 Mar-Apr.
7
Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis.
Microbiol Spectr. 2023 Aug 17;11(4):e0155623. doi: 10.1128/spectrum.01556-23. Epub 2023 Jun 26.
8
Evolved Aztreonam Resistance Is Multifactorial and Can Produce Hypervirulence in .
mBio. 2017 Oct 31;8(5):e00517-17. doi: 10.1128/mBio.00517-17.
9
Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution.
Crit Rev Microbiol. 2016;42(1):144-57. doi: 10.3109/1040841X.2014.907235. Epub 2014 Apr 25.
10
Characterization of Hypermutator Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis in Australia.
Antimicrob Agents Chemother. 2019 Mar 27;63(4). doi: 10.1128/AAC.02538-18. Print 2019 Apr.

引用本文的文献

1
Infections as ecosystems: community metabolic interactions in microbial pathogenesis.
Infect Immun. 2025 Sep 9;93(9):e0053024. doi: 10.1128/iai.00530-24. Epub 2025 Aug 4.
3
Spatiotemporal Dynamics of Molecular Messaging in Bacterial Co-Cultures Studied by Multimodal Chemical Imaging.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10863. doi: 10.1117/12.2501349. Epub 2019 Mar 7.
4
Interspecies Metabolic Complementation in Cystic Fibrosis Pathogens via Purine Exchange.
Pathogens. 2021 Feb 1;10(2):146. doi: 10.3390/pathogens10020146.
5
High Occurrence of Bacterial Competition Among Clinically Documented Opportunistic Pathogens Including in Cystic Fibrosis.
Front Microbiol. 2020 Sep 10;11:558160. doi: 10.3389/fmicb.2020.558160. eCollection 2020.
6
Pseudomonas aeruginosa polymicrobial interactions during lung infection.
Curr Opin Microbiol. 2020 Feb;53:1-8. doi: 10.1016/j.mib.2020.01.014. Epub 2020 Feb 12.
8
Selective pressures during chronic infection drive microbial competition and cooperation.
NPJ Biofilms Microbiomes. 2019 Jun 7;5(1):16. doi: 10.1038/s41522-019-0089-2. eCollection 2019.
9
Mechanistic research holds promise for bacterial vaccines and phage therapies for .
Drug Des Devel Ther. 2019 Mar 20;13:909-924. doi: 10.2147/DDDT.S189847. eCollection 2019.
10
Heterogeneous Antimicrobial Susceptibility Characteristics in Isolates from Cystic Fibrosis Patients.
mSphere. 2018 Mar 14;3(2). doi: 10.1128/mSphere.00615-17. eCollection 2018 Mar-Apr.

本文引用的文献

1
Type VI secretion requires a dynamic contractile phage tail-like structure.
Nature. 2012 Feb 26;483(7388):182-6. doi: 10.1038/nature10846.
2
Experimental evolution of multicellularity.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1595-600. doi: 10.1073/pnas.1115323109. Epub 2012 Jan 17.
3
Extreme genome reduction in symbiotic bacteria.
Nat Rev Microbiol. 2011 Nov 8;10(1):13-26. doi: 10.1038/nrmicro2670.
4
Structure and evolution of Streptomyces interaction networks in soil and in silico.
PLoS Biol. 2011 Oct;9(10):e1001184. doi: 10.1371/journal.pbio.1001184. Epub 2011 Oct 25.
5
Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections.
Am J Respir Crit Care Med. 2011 Jun 15;183(12):1674-9. doi: 10.1164/rccm.201009-1430OC. Epub 2011 Feb 4.
6
Clonal epidemiology of Pseudomonas aeruginosa in cystic fibrosis.
Int J Med Microbiol. 2010 Dec;300(8):526-33. doi: 10.1016/j.ijmm.2010.08.004. Epub 2010 Oct 14.
7
Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung.
Int J Med Microbiol. 2010 Dec;300(8):557-62. doi: 10.1016/j.ijmm.2010.08.008. Epub 2010 Oct 12.
10
Arginase: an emerging key player in the mammalian immune system.
Br J Pharmacol. 2009 Oct;158(3):638-51. doi: 10.1111/j.1476-5381.2009.00291.x. Epub 2009 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验